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ABSTRACT

The problem of enhancement and bandwidth compression

of noisy speech is formulated as a parameter esimtation

problem, in which speech and its model parameters are

estimated from the noisy speech based on the MAP estimation

procedure. Such an approach leads to two algorithms

which require solving sets ofl linear equations in an itera-

tive manner. Some approximations of the two algorithms

lead to two systems which are computationally simpler

than the two algorithms by taking advantage of a high

speed FFT algorithm. As a preliminary investigation into

the performance of the class of systems developed, two

systems are implemented and applied to both real and

synthetic speech data. An objective and informal subjec-

tive evaluation indicate that the systems implemented

perform well as enhancement and potential bandwidth com-

pression systems of noisy speech.
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CHAPTER I INTRODUCTION

I.1 Introduction

Degradation of speech by additive noise occurs in

a number of practical situations. For example, the speech

of a pilot in a plane commnunicating with the ground control

is degraded by the airplane noise. Another example is

the speech of a lecturer recorded in a noisy lecture hall.

The corrupting noise generally reduces (1] both the

intelligibility and the quality of speech. Furthermore,

the performance of many narrow-band coinmuncation systems

degrades quickly [2,3] as the speech to noise ratio

decreases. Thus, techniques for enhancement and bandwidth

compression of noisy speech have a variety of applications.

In developing systems for speech enhancement, an

important task is defining the goal of speech enhancement.

A clear definition of this goal can potentially provide

an objective criterion on the basis of which speech enhance-

ment systems can be developed. Such a goal also provides

a criterion for evaluating the performance of a system for

the particular application under consideration. In

general, speech enhancement implies a subjective improve-

ment of the speech such as increased intelligibility and

quality, reduced listener fatigue, etc. It is important

to note that the subjective improvement, even though

related, is not necessarily the same as the speech to

noise ratio increase. For example, a speech processing
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system which eliminates unvoiced segments and low-pass

filters voiced segments of speech degraded by wide band

additive noise may increase the overall S/N ratio but

probably is not a speech enhancement system in most

practical applications.

Another important aspect of developing a speech

enhancement system is to accurately assess what information

can be assumed about the speech and the background

noise. Given a noisy speech signal with no assumptions

of the speech or noise, there is little that can be done

to enhance the speech signal. A general rule for any

problem requiring the separation of individual signal

components (combined by addition, convolution, etc.) is

that the more we know about each component, the better

we can solve the problem. Depending on the nature of the

corrupting noise, some information of the noise may be

obtained from the knowledge of the source, or from actual

measurements. About speech, a great deal is known from

the vast research efforts in the general area of the speech

communications. We know a great deal about the human

speech production mechanism and also have some understand-

ing of the human perception of speech. In principle,

we can attempt to incorporate everything we know about

speech in developing a speech enhancement system. How-

ever, some of our knowledge is qualitative or complicated

and its incorporation into such a system may be very
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difficult. For example, human speech has linguistic

constraints imposed by the rules of the language. But

to incorporate such knowledge in a system for speech

enhancement is probably a difficult task. Thus, the

extent of our knowledge of speech that can be incorporated

is limited by our capability to develop and implement

systems that can exploit such available knowledge.

In developing a speech enhancement system, two

different approaches can be taken. one is the "noise

removal" approach in which a system is developed to elimi-

nate as much background noise as possible with as little

speech degradation as possible. The other approach is

the "reconstruction" approach in which the speech parameters

sufficient for reconstruction are estimated and then

speech is reconst.,.ucted based on the estimated parameters.

Which approach is better for speech enhancement depends

on many factors such as how ,much we know about speech.

However, for relatively high S/N ratios, it is expected

that the noise reduction approach is better than the

reconstruction approach since the latter generally

changes the input speech.

Independent of which approach is taken, the essence

I..of a speech enhancement system is an algorithm that iJncor-

por-ates, in some optimum manner, as much as possible of

what we know about speech and the background noise. The

optimality condition, ideally, should be based on the
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specific goal of speech enhancement. In general, such

a condition is unknown or quite complicated since a

subjective quantity such as speech intelligibility can not

easily be related to a measurable physical quantity that

may be used as a criterion for optimality. In the

absence of such a criterion or if the resulting system

becomes highly complex even in the presence of such a

criterion, we may consider a suboptimal procedure or

define the optimal condition to be optimum in a different

sense such as the maximum likelihood sense.

Suppose we have formulated an algorithm that

incorporates our knowledge about speech and the background

noise in some optimum manner, then the task rer..iins to

evaluate the performance of the system and estimate the

implementation cost. In general, the performance improve-

ment of a speech enhancement system can only be shown by

an adequate evaluation. Many systems that have been

proposed for speech enhancement provide apparent improve-

ment in the S/N ratio, but on careful evaluation [4,5,6]

in fact reduce intelligibility. If the system proposed

is sufficiently complex such that the implementation cost

is too high relative to the system performance, then an

alternative procedure has to be considered. Under such a

circumstance, we may have to go back to the beginning

and redefine the goal of speech enhancement or reconsider

the types ofl knowledge of speech and the background noise
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to be incorporated into a speech enhancement system.

Thus, developing a speech enhancement system under a

specific objective and cost constraints requires a

repetitive procedure that begins from a clear definition

of the goal of speech enhancement and ends with a decision

based on the evaluation of the system performance and

estimation of the implementation cost, but probably after

some iterations.

The problem of bandwidth compression of noisy speech

is closely related to the speech enhancement problem.

For example, a successful speech enhancement system with

the reconstruction approach has the potential to be used

as a bandwidth compression system for noisy speech.

Alternatively, the noise reduction approach can be used as

a pre-processor for a bandwidth compression system. Con-

sequently, the approach to developing a bandwidth compres-

sion system for noisy speech is essentially the same as

that for a speech enhancement system except for some

additional considerations such as coding the speech para-

meters, the degree of bandwidth compression desired,

etc. In fact, assuming the same knowledge of speech and

the background noise, and using the same optimal criterion

for both a speech enhancement system and a bandwidth

compression system, we would expect that the speech

enhancement system would look very similar to the bandwidth

1compression system. The only major difference would be
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that for the speech enhancement system, the speech

could be generated either by the noise removal or

reconstruction approach whereas for the bandwidth

compression system, speech must generally be reconstructed.

The problem of speech enhancement has received

a great deal of attention in recent years and numerous

systems have been proposed to enhance degraded speech.

Nevertheless, significant improvements in speech intelligi-

bility or quality in practical situations have not yet been

demonstrated by any of the existing systems. Part of

the problem appears to be that the approaches taken in

developing various speech enhancement systems capitalize

very little on our knowledge of speech. The proposed

systems differ primarily in how the small amount of

knowledge about the speech incorporated into the system

is exploited and how the resulting speech i3 generated.

It will become clear in our discussions in Chapter II

that if we follow the same approach that has led to the

various existing systems, we can easily generate systems

at a faster rate than we can evaluate their performance

or even implement them. Regardless of their performances,

if we develop a speech enhancement system capitalizing

I.more fully on our knowledge of speech in an "optimal"

manner we would expect, in general, a better performance.

In this dissertation, we develop systems for enhancement

* and bandwidth compression of noisy speech by attempting
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to "optimally" incorporate a specific underlying speech

model. The objective of this dissertation is, oil course,

to develop speech enhancement and bandwidth compression

systems that are potentially applicable to practical situa-

tions. An equally important objective of this dissertation

is to suggest the direction of other future research

efforts by illustrating an example of a structured and

theoretical approach for incorporating more of what we

know about speech to develop enhancement and bandwidth

compression systems of noisy speech.

1.2 Scope of Thesis

In this dissertation, various speech enhancement

systems proposed in the literature are summarized and

related to each other in a more common framework. Some of

the speech enhancement systems which appeared to be

promising were studied more carefully and were evaluated

in terms of their performance in improving spe4 ch

intelligibility. As an attempt to optimally incorporate

more of what we know about speech in developing systems

for enhancement and bandwidth compression of noisy speech,

a parameter estimation problem is formulated. The

parameter estimation problem is then considered for both

noise-free and noisy speech. For noise-free speech,

different points of view such as Maximum Likelihood

approach (7,8] , Maximum A Posteriori estimation approach,
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and Kalman filtering approach (91 are reviewed carefully

and related to each other and to the conventional linear

prediction analysis. For noisy speech, the parameter

estimation problem is shown to be generally non-linear.

Therefore, two "suboptimal" procedures which have linear

implementations are developed. In addition, two systems

for bandwidth compression and enhancement of noisy speech

which are computationally simpler than the linear imple-

mentations are developed by approximating the linear imple-

mentations. As a preliminary investigation into the per-

formance of systems developed in this dissertation, a

small subset of the systems are implemented and applied

to both synthetic and real speech data. An objective and

informal subjective evaluation indicate that the implemented

systems perform well as bandwidth compression and speech

enhancement systems at various S/N ratios. Finally, a

number of potential areas of study which are not performed

as a part of the thesis but are within the scope of the

theoretical results obtained in the thesis are summarized

and a possible direction of future research in this area

is suggested.

1.3 Summary of Chapters

In Chapter II, various existing speech enhancement

systems are summarized and related to each other in a common

framework. In Chapter III, we discuss a specific model of
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speech and the Maximum A Posteriori (MAP) estimation

approach taken in this thesis to estimate the speech model

parameters. In Chapter IV, the MAP estimation procedure

for noise-free speech is discussed. The MAP estimation

procedure under different assumptions leads to different

sets of equations to solve, two of which are equivalent

to the covariance and correlation method of the linear

prediction analysis. In Chapter V, we discuss the MAP

estimation problem for speech degraded by additive random

noise. The theoretical results in this chapter will lead

to two algorithms that require solving sets of linear

equations in an iterative manner to estimate the speech

model parameters from the noisy speech. In Chapter VI,

we develop two systems based on the algorithms developed

in Chapter V. The two systems developed are approxima-

tions of the two algorithms in Chapter V and are computa-

tionally simpler than the two algorithms. In addition

to the two systems, we develop an "ad-hoc" system primarily

for the comparison of the two systems developed in this

thesis with other speech enhancement systems previously

proposed. In Chapter VII, the performance of the three

systems developed in Chapter VI in estimating the speech

model parameters is qualitatively demonstrated by various

examples based on both synthetic and real speech data. In

Chapter VIII, the performance of the three systems is

discussed in greater detail and quantitatively based on the
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results of both the objective and subjective tests. The

objective tests are based on the synthetic data and an

objective criterion which reflects the perceptually

important aspects of the speech parameters. The subjec-

tive tests are divided into two parts, one part correspond-

ing to the bandwidth compression of noisy speech and the

second part corresponding to speech nhancement. The

comparison of various systems in terms of bandwidth compres-

sion are based on the synthesized sentences from the speech

model parameters obtained by the developed systems. In

the case of speech enhancement, two cases are considered.

In the first case, speech is generated by the noise reduc-

tion approach. In the second case, speech is generated by

a complete analysis/synthesis systems. In all cases of

the subjective tests, the evaluation is informal and based

on a few sentences spoken by both male and female speakers V

judged by listeners with no or some previous experience

in the subjective tests. In Chapter IX, we suggest a

direction and some potential areas of future research. In

Chapter X, we conclude the thesis by summarizing the main

results of this dissertation.

I.

1!
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CHAPTER II SURVEY OF SPEECH ENHANCEMENT TECHNIQUES

II.1 Introduction

A number of techniques have been previously proposed

for the enhancement of noisy speech. The purpose of this

chapter is to summarize various speech enhancement tech-

niques in a common framework and relate them to the band-

width compression systems of noisy speech. In Section

11.2, various speech enhancement systems are summarized

and related to each other. In Section 11.3, we summarize

the performance of some of the systems discussed in Section

11.2. Some of the results are based on an informal

listening or a formal speech intelligibility test conducted

in this research and some others are based on the studies

by other researchers. In Section 11.4, we discuss various

bandwidth compression systems which are based on the

speech enhancement systems summarized in Section 11.2. In

Section 11.5, we discuss the motivation for a new approach

to the problem of speech enhancement and bandwidth

compression of noisy speech.

11.2 Speech Enhancement Techniques

11.2.1 Adaptive Comb Filtering Method

Comb filtering for speech enhancement is based on the

notion that voiced sounds are periodic with a period that

b- corresponds to the fundamental frequency. Since the inter-

fering signals in general have energy in the frequency
1" ,

r .... . . . . .. ... . . . .. " i i. . . °. .. .... , -
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regions between the speech harmonics, a comb filtering

operation in principle can reduce noise while preserving

speech signals to the extent that information of the

fundamental frequency is available and periodicity of

speech is strictly preserved. Capitalizing on this knowl-

edge, a comb filtering operation that passes only the

harmonics of speech was first applied by Shields (10]

to enhance degraded speech. Frazier [111 later observed

that even with accurate fundamental frequency information

Shields' adaptive comb f-'1tering method distorts speech

signals significantly due to the time varying nature of

speech sounds. To reduce some of this distortion, Frazier

suggested an adaptive comb filter (111 which adjusts

itself to variations in the fundamental frequency. A

further improvement on Frazier's algorithm on treating

the transition regions between voicing and unvoicing was

mady by Lim (5]. In Frazier's algorithm, when voiced

sounds near the transitions are processed, the adaptive

comb filter extends over the unvoiced sounds due to the

filter length which causes some distortion. By setting

the filter coefficients that extend over unvoiced sounds

to zero, Lim (5] found that a better performance can be

*obtained.

Comb filtering generally requires accurate pitch

information. Parsons (121 developed a system which is

similar to comb filtering but the pitch information is not
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obtained separately but built into the system. More

specifically, in an application to a competing speaker

environment, each of the local spectral peaks in a high

resolution short time Fourier transform of voiced sounds

is distinguished between the main speaker and a competing

speaker. Then speech is generated based on the spectral

contents that correspond to the peaks of the main speaker.

Systems based on comb filtering have been evaluated

in this research and by other researchers and the results

are summarized in Section 11.3.1.

11.2.2 Correlation Subtraction Method

The correlation subtraction method for speech enhance-

ment is based on the notion that if additive noise is

uncorrelated with the signal, then the correlation of the

signal equals the noise correlation subtracted from the

correlation of the observed signal. More specifically,

when a signal is degraded by additive background noise,

a noisy signal y(n) can be represented by

y(n) = s(n) + d(n) (2-1)

in which s(n) and d(n) represent the signal and the back-

ground noise (or disturbance) respectively. Multiplying

both sides of equation (2-1) by y(n-k) and taking the

[ 1 ,
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expected value,

Ety(n).y(n-k)] = E[s(n).s(n-k)] + E[d(n).d(n-k)]

+ E(d(n).s(n-k)] + E[d(n-k).s(n)] (2-2)

If s(n) is assumed to be uncorrelated with d(n), the last

two terms in equation (2-2) disappear and thus

E[y(n).y(n-k)] = E(s(n).s(n-k)] + E[d(n).d(n-k)] (2-3)

If s(n) and d(n) are assumed to be stationary so that the

expectation of the two functions depends only on their

time differences, equation (2-3) with a change of variables

can be written as

R y(n) = R s(n) + Rd(n) (2-4)

in which R x(n) represents E[x(Z).x(Z-n)], the correlation

of x(n). Fourier transforming equation (2-4) leads to

P (W) = P5 (W) + Pd(W) (2-5)

i.

in which Px (w) represents FR x(n)] = Y R x(n)ne the
n=-

power spectrum of x(n). It is clear from equation (2-4)

that the subtraction of Rd(n) from R (n) leads to R s(n) and

L,
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thus the name "correlation subtraction" method.

In the case of speech, the correlation function can

not be expressed as R (n) since speech can not be considereds

stationary. Thus we define the short time correlation of

speech 0 s(n) as

00

5 (n) =I- Sw(Z) s (Z-n) (2-6)

in which s w(2) represents the windowed speech waveform.

One important difference between 's (n) and R s (n) is s(n)

can be defined for non-stationary signals as well as for

stationary signals. Since yw(n) = s w (n) + d w (n), multiply-

ing both sides with yw (n-k) and summing over all n leads to

0s(n) = y(n) - ,(n) -2 sd(n) (2-7)

where
Co

(by (n) = I y w Z "yw(-n),

d (n) = d ).dw (2-n),

and

. (n) = w s .w(Z-n)

* Equation (2-7) is exact without any approximations.

We will find that a number of speech enhancement systems
" 1 ,

r - - -
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summarized in this chapter differ primarily in how S (n)

is specifically estimated and how speech is generated

once s(n) is estimated. We will also find that in various

speech enhancement systems, equation (2-7) is a starting

point for estimating s(n) from y(n). Before we discuss

how 0 (n) is specifically estimated in the correlation

subtraction method, it is worthwhile to note why it is

important to attempt to estimate s (n) accurately. From

equation (2-6) s(n) is related to Is ( Mi, the magnitude

of the discrete time Fourier transform of s w(n), by

is w(w)1 2 = F% s(n)] = s(n)"e - j n  (2-8)

Thus the attempt to estimate s (n) more accurately iss

equivalent to attempting to preserve the short time

spectral information of speech iS w) I which is known [13]w

to be important for both the intelligibility and quality

of speech.

In the correlation subtraction method, , 5 (n) is

estimated based on equation (2-7). From the windowed

noisy speech yw (n), y(n) can be directly computed. td(n)

and tsd(n) can not be obtained exactly from y(n) unless

d(n) is exactly known and in the correlation subtraction
method, d(n) and (n) are approximated by E[ d(n)] and

E[)sd(n)]. For a zero mean d(n) uncorrelated with s(n),

E[tsd(n)) equals zero and therefore equation (2-7) can be

1

ft -
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approximately written as

Os(n) = 0y(n) - E[ d(n)] (2-9)

E(d(n)] can be obtained either from the assumed known

statistics of d(n) or by an actual measurement from the

background noise in the intervals when speech is not

present. Fourier transforming equation (2-9),

is w(Y)( 2 = -yw()I2 _ E[IDw(W)I 2] (2-10)

Based on equations (2-9) and (2-10), s (n) and ISw(W)I 2 are

estimated as

s(n) = Cy(n) - E[d(n)] (2-11a)
s ~yd

and
asn(d) 2 = yw(W)I 2 _ E[IDw(W) 2 (2-11b)

From equation (2-11b), 1Sw(w ) 2 is not guaranteed to be

non-negative. This is because there is no built-in

mechanism in the above estimation procedure to force ' (n)
s

. to correspond to the short time correlation of some real

sequence. When such a situation does occur, a number of

different arbitrary steps may be taken. In some studies,

the negative values are made pcsitive by changing the sign.
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In some other studies jSw(L) 2 is set to zero if lYw( 12

is less than E[IDw (w) 2.

Given an estimate of s (n) or iSw() , there are a

number of different ways to generate speech. One method

which is popular in the class of systems related to some

form of spectral subtraction is to approximate Sw (W),

the phase of S (w), by JY (w) and then generate s w(n)

or Sw (w) by

^ jS (W)
S (w) = IS (w)I.e (2-12a)w w

and

s (n) = F [S (W)] (2-12b)

A typical algorithm for speech enhancement by the correla-

tion subtraction method is shown in Figure 2.1. The

system in Figure 2.1 has been evaluated in this research

and the results are summarized in Section 11.3.2.

Generating s (n) by equation (2-12) corresponds tow

taking the noise reduction approach for speech enhancement.

As we discussed in Chapter I, it is possible to take the

reconstruction approach as we'll see shortly.

i.

11.2.3 Speech Enhancement by a Voice Excited Vocoder

Magill and Un [14I developed a speech enhancement

system by a voice excited LPC vocoder when the background'I
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Windowed Noisy Speech yw(fl)

LSw(w)LZYw(1 ) for lYw(u)(> E[IDWw)1 2

0 otherwise

Estimated Windowed Speech 5sv(nf)

Figure 2.1 A typical speech enhancement system by the

correlation subtraction method
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noise is white. The system information, namely the

LPC coefficients, is obtained by the correlation method

of the linear prediction analysis in which the short time

correlation of speech is estimated by the correlation

subtraction method discussed in Section 11.2.2. For

the source information, the noisy speech is low pass

filtered at 600 Hz and then non-linearly distorted to

broaden its bandwidth. This is based on the notion that

voiced speech generally decays. at 6 db/octave rate and

therefore the low frequency components are least degraded

by additive white noise. Speech is then generated based

on the estimated source and system information.

The system by Magill and Un is identical to the

correlation subtraction method in estimating 5 (n)

from y(n). The difference lies in how speech is generated

based on the estimated t (n). The reconstruction approach.s

taken in this system has a disadvantage in that the

source information has to be obtained in some manner.

However, it has the advantage that the speech enhancement

system can be used not only as a pre-processor fcr various

bandwidth compression systems of noisy-free speech, but

also as a bandwidth compression system itself. The perfor-

mance of the system by Magill and Un is not known.

11.2.4 INTEL System

Weiss, et al. [15] developed a speech enhancement

'II
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system called INTEL or "Intelligibility Enhancement by

Liftering". The INTEL system has several versions. One

early version is based on the notion that in the short

time correlation domain speech is in general more spread

from the origin than the background noise such as white

noise. Therefore some form of gating out (liftering)

the low time region of the short time correlation of

noisy speech may eliminate more noise components than

speech and thus may lead to some speech enhancement.

When a system based on this method was implemented by

Weiss, et al. [15] and also in this research, the perfor-

mance of the system was found to be rather poor.

Another version of the INTEL system which in a sense

is a generalization of the correlation subtraction method

has been studied in some detail in this research. The

INTEL system referred from this point on corresponds to

this version of the INTEL system. In Section 11.2.2,

it was shown that the correlation subtraction method

corresponds to estimating the short time correlation of

speech s(n) by F-1[IYw(w)I 2 ] - E[F- [IDw(Ml 2]]. Weiss,

et al. simply replaced the squaring operation with an

arbitrary positive real constant "a". In this method, then,

bydefining .s(n) to be F-1 (IS (,),a,, ,(n) is estimated by

.F- [IYw(.,,), a , - E[F- I[D (,)a],. Based on this estimate

of ' (n) and the assumption that S w() ecualz -Y w(w),

speech is generated. The speech enhancement system proposed

'I

. _ . . . . . . , ... ........ ... .. ....
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by Weiss, et al. is shown in Figure 2.2.

The algorithm in Figure 2.2 can be simplified both

computationally and conceptually by recognizing that the

expectation and Fourier transform operations are linear

and hence can be inter-changed. Such a simplified system

is shown in Figure 2.3. The figure clearly shows that

the INTEL system is one way of estimating the short time

spectral magnitude of speech. In Figure 2.3 when IS w(W) I

obtained is not positive, it is set to zero for the

similar reason discussed in Section 11.2.2. The perfor-

mance of the INTEL system is summarized in Section 11.3.2.

11.2.5 SABER Method

Boll [16] developed a speech enhancement system

called SABER or "Spectral Averaging for Bias Estimation

and Removal". In this method, ISw() I is estimated by

subtracting E[D.(,) ' from a local average of IY

More specifically, it is assumed that

iS )l IY (W)I. - E[IDw(w)I] (2-13a)

where IYw )i represents !Y w(w) obtained from the ith

. segment of the noisy speech and M is the number of consecu-

tive windows used for local averaging.

To relate the SABER method to the INTEL system, we

rewrite equation (2-13a) as follows:'i
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Is (W) ~ (IYw(w) i - E[ID(w)I1) (2-13b)

The term IY w () Ii E[IDw(w)I] in equation (2-13) is

how ISw(w)Ii is estimated by the INTEL system with a-l.

Therefore the SABER method is equivalent to estimating

ISw ) I by a local average of the sets of IS^(w) I obtained

by the INTEL system with a=l if the same windows are used

in both cases. In fact, in the implementation of the INTEL

system, some form of local averaging is done by applying

the windows that are overlapped with each other to the

input noisy speech data. In this context, then, the

SABER method can be viewed as a variation of a special

case of the INTEL system shown in Figure 2.3. The

evaluation results of the SABER method reported by Boll

are summarized in Section 11.3.3.

In a more recent study [171, Boll reported that the

local averaging discussed above is not important in his

system.

11.2.6 Other Generalizations of Correlation

Subtraction Method

The INTEL system discussed in Section 11.2.4 is in

a sense an arbitrary generalization of the correlation

subtraction method. An alternative arbitrary generalization

is to estimate ISw(W) 2 by IYw 2 - k'E[D w() 2 ] forW w w

some arbitrary constant k and based on this estimate of

]4

.. . . . . .. . . - o-
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IS (w)I, speech can be generated in the same mannerw

as in the correlation subtraction method. This system

was proposed (18] for possible speech enhancement and

studied in this research. The performance of this system

is summarized in Section 11.3.4.

In a more recent study (19], Schwartz etal. considered

for speech enhancement the same system discussed above.

In their study, an additional feature is included in

that after the subtraction ISw() I2 obtained is compared

to a threshold level $'E[IDw (w)I 2 ] for a small arbitrary

constant $ and if IS (w)2 is smaller it is set to
w

B.E[IDw() 1]. Thus in their system,

is (l 12 = IY (W)12 _ k2E[ID 2

for IY w W) 12 > (k+B)'E[ID w()12],

$.E[IDw )l I2  otherwise

Clearly, there exist a number of other arbitrary gener-

alizations. For example, we could estimate ISw(.) a by

IYw(w)I a - k'E[IDw(w)I a ] for some arbitrary constants

I. .a and k. Such a system includes both the INTEL system

(by setting k=l) and the system discussed in this section

(by setting a=2) as special cases.
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11.2.7 SPAC and SPOC

Suzuki developed [201 a speech enhancement system

called SPAC or "Splicing of Autocorrelation Function".

SPOC or "Splicing of Cross-correlation Function" is a

revised version [211 of SPAC. The two systems have been

used for compression or expansion of the spectrum, or

lengthening or shortening the duration of speech, or

reducing the noise level in the speech signal. In the

discussions in this section only the noise reduction

aspect is considered.

SPAC is based on the notion that the short time

correlation of speech has common frequency components

with the short time speech. Therefore, for voiced sounds

that are periodic with the fundamental frequency, the

short time correlation properly defined is also periodic

with the fundamental frequency. Furthermore, if one

replaces each pitch period of speech with the corresponding

pitch period of the short time correlation, then the

frequency components of speech would be unchanged except

that the spectral magnitude at each frequency would be

approximately squared. Since the effect of the background

noise such as white noise generally degrades more the

points near the origin in the short time correlation

domain, speech may be enhanced by replacing each pitch

period of speech with one pitch period of the corresponding

short time correlation beginning some points away from the
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origin. Suzuki observed that SPAC causes some distortions

due to the squaring operation of the spectral magnitude

of speech caused by replacing speech with its short time

correlation. SPOC is a revision of SPAC to reduce

such distortions.

To ap reciate how this method compares to other

methods in terms of its performance, we consider a very

simple example. Suppose the background noise is zero mean

and white Gaussian with the variance of a 2 and further
d

assume that s(n) is periodic with the period of T such

that s(n+T) = s(n) for all n. We define the short time

correlation of speech *(n) at no by

n 0+M-l

S Z=n 0

for some fixed M and *(n) and *(n) are similarly defined.

Note that *(n) is slightly different from ;s(n) in that

the summation is over M number of points independent of n.

Three cases are considered. In the first case, *Cn)
5

is simply estimated as *(n) and thus
y

0s(n) = *(n) for 0 < n < T-1 (2-14)
s yI.

* In the second case, t*(n) is estimated by t*(n) - E[L(n)]
s y d

and therefore

1 .,
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2
s(n) = (n) -Mcd.5 (n) for 0 < n < T-1 (2-15)

This case corresponds to the correlation subtraction method.

The third case corresponds to estimating *(n) by SPAC
5

and therefore

a (n) = 0*(n+T) for n = 0

5 y
0*(n) for 1 < n < T-1 (2-16)
y

Comparing equations (2-14), (2-15) and (2-16), (*(n)
S

estimated is the same for 1 < n < T-1 in all three cases.

Defining e(0) = 0*(0) - 0*(0), it can be easily shown
s s

for case 1,

2
E(e(O)] = M o2

n +M-1

Var[e(O)] = 4 Z s 2()'d + 2M'c 4  (2-17a)
Z=n 

0

for case 2,

E~e(0)] = 0

Varfe(0)] = 4 2 s2 .od + 2Ma
4  (2-17b)

Z=n 0

I,
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and for case 3,

Ete(0)1 = 0

n0+M-i
0 2 2 4

Vart[e(0)] = 2 1 s (Z)-ad + Md + k
+=n

0
n0Mi2 2

in which k << 2 s (Z) .a
n 0 . d

n 0 +M-l

and therefore Varte(0)] = 2 Z s2(d).G2+M-ad (2-17c)
Z=n 0

The above comparison shows that the correlation subtraction

method eliminates the bias but does not reduce the error

variance. SPAC eliminates the bias and reduces the error

variance by about 50%.

On the other hand, SPAC requires an estimation of the

fundamental frequency and speech is not strictly periodic

even for voiced sounds. Furthermore, SPAC can not be

applied to unvoiced sounds and even with the revision made

by SPOC, there are some spectral degradations due to

replacing speech with the short time correlation type of

function. The performance of SPAC or SPOC is not known.

A.
11.2.8 Wiener Filtering Method

If y(n) = s(n) + d(n) in which s(n) and d(n) are

samples obtained from uncorrelated stationary random

processes and if y(n) is available for all time, it is
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well known [22] that the optimum linear estimator that

minimizes E((s(n) - g(n)) 2] in which 9(n) represents

the estimate of s(n) is given by the non-causal Wiener

filter whose frequency response is given by

= sps(w) + Pd(w) (2-18)

where P (w) represents the power spectrum of x(n).

Callahan [23] approximates the non-causal Wiener

filter in terms of the average short time energy spectrum

and thus

H(W) -- s M l (2-19)E[ s (w) ] + E[D d(W) J

in which (D(2) and (d) are given by F[ s(n)] and F[Pd(n)].

E[Dd (w)] can be obtained either from the assumed known

--tatistics of d(n) or by averaging many frames of :d()

during which noise can be assumed to be stationary.

E( (w)] is estimated by subtracting E[ d (w)] from

locally averaged y (w) over many consecutive windows.

Callahan notes that to estimate E[y (w)] within an accept-

able variance, D (w) should be averaged over at least 100

A. msec which is a relatively long interval during which

speech may not be assumed to be stationary. If E[ (w)]
s

estimated is negative, it is set to zero. The short time

Fourier transform S (2 is then estimated by multiplying, W
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Y w M with H(w) given in equation (2-19). Thus in this

wwsystem, Is w() ! is estimated by JY w( M .H(w) where

H(w) is obtained from equation (2-19) and S (w ) is

assumed to be Y(w). In the specific algorithm by

Callahan, only one point of s (n) is obtained from the
w

estimated S wM) and the window slides through y(n) by
w

one point at a time. The performance of this system

reported by Callahan is summarized in Section 11.3.5.

It appears that there are a number of other ways to

obtain E[# (y)] used in estimating H(w) in equationy
(2-19). Instead of averaging D (w) over 100 msec, any
equally reasonable way appears to be to perform some kind

of smoothing on D Cw) and assume the smoothed b (w) toy y
be ElD (w)]. Also, if we want to generalize the Wienery

filtering method arbitrarily as was done in the case of

the correlation subtraction method, there are, of course,

numerous possibilities.

11.2.9 Summary

In this section, various speech enhancement systems

discussed in Section 11.2 are briefly summarized. The

comb filtering method is an attempt to increase the S/N

ratio based on the periodicity of voiced sounds. SPAC

or SPOC is based on the notion that in the correlation

domain the effect of the background noise is typically

more pronounced near the origin while speech repeats itself'I

- - --



ni..

-52-

in each pitch period. In generating speech in SPAC or

SPOC, the notion that voiced sounds are periodic and the

spectral contents of one period of speech is closely

related to one period of its correlation is exploited.

All other methods discussed in Section 11.2 differ

primarily in how (n) or IS (w)l is estimated and how
5

speech is generated based on 0s (n) or ISw(.)I. Their

differences are summarized in Table 2.1.

11.3 Summary of Performance Evaluation

11.3.1 Adaptive Comb Filtering Method

Speech enhancement techniques related to comb filtering

have been evaluated more extensively relative to other

techniques. Using Frazier's system [11], Perlmutter [4]

processed some speech material that consist of nonsense

sentences and performed intelligibility tests with inter-

ference consisting of the speech of a competing talker.

Her results indicate that even with accurate fundamental

frequency information, the adaptive comb filtering method

decreases intelligibility at the S/N ratios where the

intelligibility of unprocessed nonsense sentences range

between 20 to 70%.

As a part of this research, Frazier's adaptive comb
I.

filtering method with the improvement made by Lim [5] has

been evaluated by using nonsense sentences as test materials

when the interference is wide band random noise. In Figure

.-A
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2.4 is shown the results of the intelligibility test as

a function of the SI/N ratio and the length of the adaptive

comb filter. The results of the test show that even with

carefully hand edited pitch information, an adaptive comb

filtering method tends to decrease the speech intelligi-

bility at the S/N ratios where the intelligibility scores

of unprocessed nonsense sentences range between 20 and 70%.

Since in practice accurate pitch information is not

available and can not be expected to be obtained from

degraded speech, the intelligibility scores will be even

lower than shown in Figure 2.4.

The evaluation results of the systems by Parsons

is not available. However, an informal Listening

indicates that the performance is similar to Frazier's

system when applied to a competing speaker environment.

11.3.2 Correlation Subtraction Method and INTEL

System

As we discussed in Section 11.2, the INTEL system is

in a sense an arbitrary generalization of the correlation

subtraction method. More specifically, the case when a=2

in the INTEL system corresponds to the correlation subtrac-

tion method. In this research, *the performance of the

INTEL system in Figure 2.3 has been evaluated [6] b%

using nonsnese sentences as test materials when the

interference is wide band random nolse. This study was
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FILTER LENGTH

100%/-. NO PROCESSING

-----------------------------43 PITCH PERIODS

80% m --- *----U 7 PITCH PERIODSA

A- --- A 13 PITCH PERIODS
0

40%-

z/

20% .

-5dB 0dB +5dB + C S/N RATIO

Figure 2.4 Results of the intelligibility test performed
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motivated primarily by the subjective impression that

substantial noise reduction was achieved by the INTEL

system. In Figure 2.5 is shown the results of the

intelligibility test as a function of the S/N ratio and

the constant "a". The results of the test show that the

system does not increase the speech intelligibility at

the S/N ratios where the intelligibility scores of

unprocessed nonsense sentences range between 20 and 70%.

Based on our informal subjective judgement, however, the

processed speech by the INTEL system sounds "less noisy"

and of higher quality at relatively high S/N ratios. Thus

if the system is evaluated at higher S/N ratios, in terms

of speech quality or as a pre-processor for a bandwidth

compression system, then the system may be found to be

useful. There is some indication that the above may be

true, as will be discussed in the next section.

11.3.3 SABER Method

Boll reported (171 the results of a very preliminary

evaluation of the SABER method, which corresponds to a=l

of the INTEL system. His results by the Diagnostic Rhyme

test indicate that at the S/N ratio at which the intelli-

gibility score of the unprocessed speech material is

about 84% the SABER method does not increase speech intell-

igibility which is consistent with our results of the

INT1EL system with a=l. However, when speech quality is



-58-

NO PROCESSING

0- -------.. a -- 2.0

I--- a = 1.O

0_ _ _, a=.5
w

a- 80 ................ o a =.25

>. ./. 7

-60-

-40-
-j1

20 o.°

-5 0 +5 +00

S/N RATIO (dB)

Figure 2.5 Results of the intelligibility test performed

to evaluate the INTEL system for enhancement of noisy speech

I.

mmmP "



-59-

tested [17] or the SABER method is used as a pre-processor

of a bandwidth compression system, some improvement is

noted at the above S/N ratio.

11.3.4 Other Generalizations of Correlation

Subtraction Method

Even though an extensive intelligibility test has not

been performed to evaluate the system discussed in

Section 11.2.6 (IS^ (w)I2 = Y w)I - k'E[IDw)2 1),

based on an informal listening test it appears that the

performance of this system is similar to the INTEL system,

with a higher value of k generally corresponding to a

smaller value of a. For a wide ranging S/N ratios (below

approximately 5 db), a value of k less than 2 appears to

be better. A large value of k at low S/N ratios has the

effect of essentially eliminating the unvoiced sounds

and higher formants of voiced sounds. Further details

on the performance of this system will be discussed later

in this thesis.

The system by Schwartz et al. which has an additional

parameter 8 is reported [19] to eliminate some perceptually

unpleasant speech degradation in the processing by a

proper choice of S.

11.3.5 Wiener Filtering Method

Callahan applied the Wiener filtering method discussed
4'
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in Section 11.2.8 to reduce surface noise of a 1907

recording by Enrico Caruso and reported [23] that the

technique "greatly reduces" the surface noise. The per-

formance of the system when applied to enhance noisy

speech is not known.

11.4 Bandwidth Compression Systems of Noisy Speech

Our discussions in Sections 11.2 and 11.3 have

been primarily concerned with speech enhancement systems.

However, most of the discussions apply equally well to

the bandwidth compression systems of noisy speech, since

the two are closely related to each other, as we discussed

in Chapter I. A successful speech enhancement system can

in general be used as a part of a bandwidth compression

system of noisy speech. This point is obvious for a class

of speech enhancement systems based on an analysis/synthesis

system. Alternatively, a successful speech enhancement

system can potentially be used as a pre-processor for a

bandwidth compression system of noise-free speech, in which

case we can represent an overall bandwidth compression

system of noisy speech as shown in Figure 2.6.

In some cases, the system in Figure 2.6 can be

simplified. For example, a speech enhancement system such

as the correlation subtraction methcd is directed towards

estimating 'Sw(.), more accurately. in a bandwidth compression

system such as an LPC vocoder [24,25], a homomorphic

1.
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Noisy Speech -- Speech Enhancement

System

Enhanced Speech

Speech Synthesis - Bandwidth Conpressicn -*

Parameters System of
Noise-free Speech

Figure 2:6 The analysis part of a bandwidth compression

system of noisy speech when a speech enhancement system

is used as a pre-processor

Noisy Speech Estimation of ISw(w) I

Speech Synthesis ._ Estimation of Speech

Parameters Synthesis Parameters

Figure 2.7 A possible simplification of the system in

Figure 2.6 for some cases. See the text for the details
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vocoder (261 and a spectral root vocoder [27], ISw(w)I

can be directly used to obtain the speech synthesis para-

meters. Then the system in Figure 2.6 can be simplified

to Figure 2.7. The main advantage of the system in

Figure 2.7 relative to the system in Figure 2.6 is the

computational simplicity in that the speech generation

process from IS^(w)l in the speech enhancement system can

be avoided. A disadvantage is that an existing bandwidth

compression system of noise-free speech has to be modified.

From the above discussions, any speech enhancement

system discussed in Section 11.2 may be used in one form

or another for the bandwidth compression of noisy speech.

Little data exist in the literature on the performance

evaluation of such a bandwidth compression system.

11.5 Motivation for a New Approach

In this chapter, we have summarized various speech

enhancement systems previously proposed. Even though the

list of the speech enhancement systems summarized in

Section 11.2 is not complete, they illustrate the basic

philosophy behind currently available speech enhancement

systems and raise a number of important questions. One

question is in the incorporation of more knowledge of speech.

As we have seen in 5,ction 11.2, the speech enhancement

systems previously proposed are typically based on the per-

iodicity of voiced sounds, uncorrelation of speech with
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the background noise or the importance of the short time

spectral information for the human speech perception.

A natural question is if other knowledge of speech can be

incorporated in developing speech enhancement systems.

Another question is in how we incorporate what we know

about speech. As we discussed in Chapter I, it is

desirable to incorporate our knowledge of speech in a

manner consistent with the goal of speech enhancement.

In the speech enhancement systems previously proposed, a

serious attempt has not been made to "optimally" incor-

porate what we know about speech. A third question is on

developing a bandwidth compression system. in our discus-

sions of the bandwidth compression systems of noisy

speech in Section 11.4, we have considered using the speech

enhancement systems as pre-processors. Such a system

typically requires generating enhanced speech and then

using the enhanced speech as input to a bandwidth compression

system of noise-free speech. A natural question that

arises is if we can estimate the speech synthesis parameters

directly from the noisy speech.

In this dissertation, we develop systems for enhancement

and bandwidth compression of noisy speech by attempting

to estimate the speech synthesis parameters directly from

the noisy speech based on a well known estimation procedure.

Such as approach leads to the incorporation of more knowledge

of speech in an "ontimum" manner. In the next chapter, we
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discuss the basic approach taken in this thesis for

enhancement and bandwidth compression of noisy speech.

i.

. -

" ,
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CHAPTER III MODEL OF SPEECH AND ITS PARAMETER

ESTIMATION

III.1 Introduction

Many successful speech processing systems rely at

least to some extent on a model of the speech as the

response of a quasi-stationary linear system to a pulse-

like excitation for voiced sounds or a noise-like excita-

tion for unvoiced sounds. To develop systems for enhance-

ment and bandwidth compression of noisy speech, it is

reasonable to capitalize on the underlying speech model.

Thus in this chapter, we formulate the problem of speech

enhancement and bandwidth compression of noisy speech as a

parameter estimation problem of the speech model parameters.

In Section 111.2, we present the model of speech which has

been studied in great detail [7,13] and has been used

extensively [7,13] in many practical applications. In

Section 111.3, we represent the speech model discussed in

Section 111.2 in several different forms which we'll find

useful in the later chapters. In Section 111.4, we discuss

the model of noisy speech and its several different repre-

sentations. In Section 111.5, we review briefly the theory

of the general parameter estimation problem and three

standard estimation rules that have been studied extensively

in the literature. In Section 111.6, we discuss the esti-

mation of the speech model parameters and its relation to

* the problem of enhancement and bandwidth compression of
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noisy speech.

111.2 Model of Speech

A digital model of sampled speech that has been used

in a number of practical applications and has a basis

[7,13] in the human speech production system is shown

in Figure 3.1. In the model, the excitation source is

either a quasi-periodic train of pulses for voiced sounds

or random noise for unvoiced sounds. The digital filter

represents the effects of the vocal tract, lip radiation,

and in addition the glottal source in the case of voiced

sounds. Since the vocal tract changes in shape as a function

of time, the digital filter in Figure 3.1 is in general

time varying. However, over a short interval of time,

we may approximate the digital filter as a linear time

invariant system that can be represented as

H(z) = G(z).V(z).R(z) for voiced sounds

V(z).R(z) for unvoiced sounds

where G(z), V(z) and R(z) represent the effects of the

glottal source, the vocal tract and the lip radiation,

respectively.

in general H(z) consists of both poles and zeroes.

However, for non-nasal voiced sounds, H(z) can be shown

(7] to be reasonably well modelled by an all pole system.

- .
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Furthermore, even for those cases such as nasal sounds or

unvoiced sounds in which H(z) can not adequately be

modelled [7] as an all pole system, experience [7,13]

has shown that speech analysis based on an all pole

system H(z) leads to many useful results and speech synthe-

sized based on the all pole model is highly intelligible

and of high quality. Since the analysis in general is

much simpler for an all pole system than a more general

system that includes zeroes as well as poles, H(z) will

be modelled as an all pole system. Thus in this thesis,

speech is modelled on the short time basis as the response

of a stationary all pole system to a pulse-like excitation

for voiced sounds or a noise-like excitation for unvoiced

sounds.

111.3 Reoresentations of the Model of Speech

The model of speech discussed in Section 111.2 can

be represented in many different forms. In this

section, we discuss four different representations of

the speech model.

In the speech model discussed in Section 111.2,

the transfer function H(z) is modelled to be all-pole

of the form

H(z) 1 (3-1)~-k
1 - a. • z

k=l
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Thus, on a short time basis the speech waveform s(n) is

assumed to satisfy a difference equation of the form

s(n) = ak.s(n-k) + u(n) (3-2)k=l

where u(n) is a pulse train or random noise. Notationally,

it is convenient to represent equation (3-2) in a matrix

form as

T
s(n) = a .s(n-l,n-p) + u(n) (3-3)

1
and a is the parameter vector

a1

a2

a .(3-4)

a
p

and s(nl,n 2) denotes the vector of speech samples

s(n 1 )

s(nl,n 2 ) = (3-5)

I.
s(n 2

A summary of various notations used throughout the thesis
is in Appendix 1.

* 'I
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The vector of observations is assumed to consist of N

values s(N-l), s(N-2), ... , s(O), i.e., s(N-l,O),

which will be denoted by sO . Equation (3-3) for

0 < n < N-1 is one representation of the speech model.

Equation (3-3) can be represented in various

different forms. One form comes from rewriting equation

(3-3) as

s(N-1,0) = A.s(N-l,0) + AI'S I + u(N-l,Q) (3-6a)

where A is an NxN matrix given by

0 aI a2 .... a 0, 0, .... 0

0 0 a1 a2

0 0 (3-6b)

a 2S

0", a1

0

and AI is an Nxp matrix given by

h.
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0

U 0

a
AP" (3-6c)

aI '

.. ~aI ,.... ,

and s 1 is a pxl matrix given by

s(-l)

s(-2)

= s(-,-p) = "(3-6d)

3(-p)

Therefore,

s(N-1,0) = (I-A) -! Ai sI  + (I-A)- u(N-1,0) (3-6e)

Equation (3-6) is another representation of the speech

model.

Two other forms can be derived by representing equation

(3-3) in a state space form as shown in the following
'I
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equation:

x(n) = F(n).x(n-l) + G(n)'u(n)

z(n) = H(n)-x(n) + v(n) for 0<n<N-I (3-7)

where x(n) is a state vector,

z(n) is an observation vector,

* u(n) is an excitation vector,

v(n) is an observation noise vector,

and x(-l) is an initial condition vector.

Equation (3-3) can be represented in the form of equation

(3-7) by using a as a state vector and thus

a(n) = a(n-1)
T

s(n) = s (n-l,n-p).a(n) + u(n) for O<n<N-i (3-8)

Alternatively, s(n,n-p+l) can be used as a state

vector x(n) and thus

x(n) = F-x(n-l) + G-u(n)

s(n) = H-x(n) for O<n<N-i (3-9a)

I.
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x 1(n) s (n)

x 2 (n) s (n-1)

where i(n) =.-(3-9b)

x(n) s(n-p+1)

a,, a 2.. .. . .. .. .. .. .. .. .. a

1 ,0 ,0, 0 ........... 0

o0 1 ,0, 0 ...........

0 0 1, 0, 0....0 (3-9c)

o0 0 f 0, 1, 0, 0,...,0

0 0, 1, 0,

0

0

G 0 (3-9d)

0

and H = 1,0,0 ....... 01 (3-9e)

In the above, we have seen that the speech model. can

be represented Ln at least four different forms, namely

equations (3-3) , (3-6) , (3-8) and (3-9) . These different

representations will be found to be useful at various points
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in our later discussions.

III.4 Model of Noisy Speech and its Representations

When the background noise is added to speech, the

noisy speech can be represented as

y(n) = s(n) + d(n) (3-10a)

where y(n) represents noisy speech and d(n) represents

the background noise or disturbance. The observation

vector y(N-l,0) which will alternatively be denoted as

Y' ,then, consists of the sum of speech and background

noise, i.e.,

y(N-l,0) = s(N-l,0) + d(N-l,0) (3-10b)

Combining equations (3-3) and (3-10),

T T
y(n) = a .y(n-l,n-p) - a .d(n-l,n-p) + u(n)

for 0 < n < N-1 (3-11)

Like equation (3-3), equation (3-11) can alternatively

be represented in various different forms. Two convenient

representations which parallel equations (3-6e) and (3-9a)

are

-1 -1y(N-l,0) =(I-A) .A1 .si+(I-A) "u(N-1,0) +d(N-l, 0) (3-12)

1%-]- -
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where A, A and s. are given by equation (3-6) and

x(n) = Fx(n-1) + G-u(n)

y(n) = Hx(n) + d(n) for 0 < n < N-I (3-13)

where x(n), F, G and H are given by equation (3-9).

Equation (3-11), (3-12) or (3-13) represents the model

of noisy speech and will be found to be useful in the

later disucssions.

111.5 Review of Parameter Estimation Theory

In this section, we review very briefly the general

parameter estimation theory. Let A and R denote the

parameter space and the observation space, and suppose

that there is a probabilisitc mapping between the para-

meter space and the observation space. Assume that a

point a in the parameter space was mapped to a point r

in the observation space. The parameter estimation problem

is to estimate the value of a after observing r by some

estimation rule.

Three different estimation rules known as Maximum

Likelihood (ML), Maximum A Posteriori (MAP) and MinimumI.
Mean Square Error (MMSE) estimation have many desirable

properties and thus have been studied [22,281 extensively

in the literature. For non-random parameters, the ML

estimation rule is often used. In the ML estimation, the

L .L ..... ... l ... .. . .. ... .. .... .... ......... .i
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parameter value is chosen such that the chosen value most like-

ly resulted in the observation r. Thus, the value of a is

chosen such that PRIA(r a), the probability density function

of R conditioned on A, is maximized at the observed r and the

chosen value of a. The MAP and MMSE estimation rules are

commonly used for the parameters that can be considered as

random variables whose a priori density function is known.

In the MAP estimation rule, the parameter value is chosen

such that the a posteriori density PAIR(air) is maximized at

the observed r and the chosen value of a. Even though the MAP

estimation rule is based on a random parameter assumption and

the ML estimation rule is based on a non-random parameter as-

sumption, the two estimation rules lead to identical estimates

of the parameter value when the a priori density of the para-

meter in the MAP estimation rule is assumed to be flat over

the parameter space. For this reason, the ML estimation rule

is often viewed as a special case of the MAP estimation rule.

In the MMSE estimation rule a(R) , the estimate of a, is ob-

tained by minimizing the mean square error E[(&(R)-a) 2. The

MMSE estimate of a is given by E[aIr], the a posteriori mean

of a given r. Therefore, when the maximum of the a posteriori

density function PAIR(axr) coincides with its mean, the MAP

estimation and MMSE estimation rules lead to identical esti-

mates.

The three estimation procedures briefly discussed

above have been applied [22,28] to a number of practical



-77-

parameter estimation problems. Detailed discussions on

their properties, relations and application areas can

be found in [22,28].

111.6 Estimation of Speech Model Parameters

The model of speech discussed in Section 111.2 is

completely specified if we determine the parameters related

to the excitation u(n) and the system parameters a in

H~z) of equation (3-1) . The basic problem that has been

considered in this dissertation is the estimation of

the all pole coefficients a k.

Ideally, the all pole coefficients should be

estimated based on a rule consistent with the subjective

aspects of speech. Since a function of a that relates

the degree of speech degradation in the subjective domain

is not well understood, developing such an estimation rule

is difficult. However, we may attempt to use other well

k:iown estimation rules discussed in Section 111.5 which

are optimum in a different sense but which have been

successfully applied to a number of other practical

problems. In this dissertation, we take the approach to

use the MAP estimation procedure. The parameter to be

estimated is a and the observation is the noisy speech.

The MAP estimation procedure is based on the philo-

sophy to maximize p(aly0 ) where a and yo represent the

all pole coefficient vector and the noisy speech vector.
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The approach to use the MAP estimation procedure to estimate

the all pole coefficients has a number of advantages.

First, the procedure and properties of the MAP estimation

are well established [22] and can be applied to speech

processing. Second, the Maximum Likelihood (ML)

estimation procedure can be viewed as a special case of

the MAP estimation procedure since the two estimates are

the same when the a priori density of a is assumed to be

flat. One property of the ML estimation which is useful

for speech processing is that if f(a) has a one to one

correspondence with a, then fL(a) = f(aML) where a

represents the ML estimate of a. Therefore, if the percep-

tually important parameters have a one to one correspondence

with a, then the ML estimates for such perceptually impor-

tant parameters are automatically obtained by obtaining

aML. Further, as will be discussed in greater detail in

Chapter IV, for noise-free speech a under appropriate

assumptions are equivalent to the a obtained by the covar-

iance (7,291 or correlation [7,29] method both of which

have been successfully applied to the Linear Predictive

Coding of speech. Third, the MAP estimation procedure

provides a theoretical framework in which some a priori

information about a can be incorporated. Due to the

temporal and spectral characteristics of speech, some a

priori information of the all pole coefficients a when

* . properly incorporated may in fact aid in estimating a.
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In estimating a by the MAP estimation procedure, the

excitation u(n) is assumed 1c "- zero-mean white Gaussian

noise. In the context of the speech model discussed in

Section 111.2, this assumption is valid only for unvoiced

speech since the excitation is assumed to be random noise.

There are several reasons behind this particular choice of

the excitation. First, the analysis of the MAP estimation

procedure is relatively simple in the case of the random

noise excitation if the excitation is assumed to be

generated by a white Gaussian process. The case when the

excitation is a pulse train is considerably more difficult.

Second, as will be discussed in Chapter IV, in the absence

of background noise with the excitation treated random

one set of the MAP estimation procedures corresponds

exactly to the linear prediction analysis which is well

known to be successful for both voiced and unvoiced

speech. Further, as will be discussed in Chapters VII

and VIII, the theoretical results developed in the thesis

for the system parameter estimation in the =esence of

background noise when the excitation is random noise can

be applied with similar performance to the case of the

pulse train excitation.

I" If the all pole coefficients can be "better" estimated

through the !AP estimation procedure by accountina for the

presence of noise, then we in fact have a better bandwidth

*compression system of noisy speech in the context of an LPC
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vocoder. Even though a complete vocoding system requires

the estimation of the source parameters as well as the

system parameters, the problem of estimating the source

parameters accounting for the presence of background

noise will not be treated in this thesis. For the

enhancement of noisy speech, there are two ways that

the estimation of a can lead to speech enhancement. If

we in fact have a successful bandwidth compression

system, then the bandwidth compression system itself can

be used as a speech enhancer. Alternatively, in the

systems that we develop for the estimation of the all

pole coefficients, the speech s(n) is estimated in the

process of estimating the all pole coefficients. Thus if

speech enhancement is desired, then the estimated s(n)

can be used as the enhanced speech. The fact that s(n)

is also estimated is important not only in the context of

speech enhancement, but in the context of bandwidth compres-

sion of noisy speech. if we estLtate only the all pole

coefficients, then we are limited to a class of vocoding

systems known as LPC vocoders. Since speech is estimated

as well as the all pole coefficients, the systems developed

can also be sued as pre-crocessors for any vocoding system.

Therefore, the systems developed in this thesis are

potentially applicable for both bandwidth compresssion

through a variety of vocoding systems and speech enhance-

ment of noisy speech.



CHAPTER IV STATISTICAL PARAMETER ESTIMATION FROM

NOISE-FEEE SPEECH

IV.! Introduction

In this chapter, we review and relate various ways

of estimating the speech model parameters from the noise-

free speech. In Section IV.2, the problem of parameter

estimation from the noise-free speech is formulated. In

Sections IV.3 and IV.4 are discussed two different approaches

for the same parameter estimation problem formulated

in Section IV.2.

IV.2 Problem Formulation

Speech is modelled as the response of a linear

quasi-stationary system to a noise-like excitation.

From eauation (3-3) with u(n) corresponding to white

Gaussian noise,

T
s(n) = a .s(n-!,n-p) + g w(n) (4-1)

where w(n) is white Gaussian noise with zero mean and

unit variance (i.e., E[w(n)] = 0 and E[w(n).w(m)] = (n-m)).

Equation (4-1) implies that s(n) depends on a total

of 2l+l carameters, specifically the z values in t".e

:oefficient vector a, the initial conditions s- =

and the zain factor a. We assume that these unknown para-

meters are random with associated a oriori Gaussian =rcbabi!-

INa i .
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ity densities. The basic problem treated in this thesis

is to estimate the system parameters a from the observa-

tion vector O by the MAP estimation procedure. Thus

the system parameters a are chosen to maximize p(also),

the probability density function2 of a conditioned on .O"

There are several approaches that can be taken in maximiz-

ing p(aI.o). In Sections IV.3 and IV.4, we consider two

different approaches.

IV.3 Direct Approach: Maximization of p(al O )

p(al O ) can be written as

p(a~o) = f f p<a,g,s~) ~~dg ds_ (4-2)

over g
and sI

From Bayes' rule, p(a,g,siIo) is given by:

o (a,g,siI ) -)(4-3)

The conditional density function p(o!a,g,s ) can be

evaluated by noting that

2For a more accurate representation, a probability density
function nx( .) and the density function evaluated at x=x0
should be distinguished. For the notational convenience,
0(x ) will be used in both cases and .ne distinction will

be left to the context in which it is used.
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P(Sola,g,si) = p~s(N-1,0)la,g,s(-!,-p))

N-i
= i p (s (n) Ia,g, s(n-1, -p))

n=0

N-I

= -B0 p(s(n)ja,g,s(n-l,n-p)) (4-4)

From the model of equation (4-1) and the assumption that

w(n) is white Guassian noise with unit variance,

p(s(n) la,g,s(n-!,n-p))

- 1 (si) T 2

2 exp[- -I- (s(n)-a *s(n-1,n-p)) (4-5)
(2"rg /2g

From equations (4-4) and (4-5),

a 1 NI T 2
(Ig ) 22 N/Iexp [- --- r" '(s(n)-a "s(n-l,n-p))](4-6)
(2rg 2g" n=0-

p(a,g,s ) in equation (4-3) represents the a priori knowl-

edge of the three unknown parameters. For a general Oaussian
3

density of p(a,g,si), it can be shown that maximizing

3Consider a special case in which g is known, 1s (0)]

and p=l. For a Gaussian density of p(as I), p(a's O ) is

in the form of

ak 2 (a-k 3 )
(3 (2+k1/i2 e fla1 )

where ki, K,, k and k are constants. Maxinmizina

p(a ;s(0)) in the above highly simplified case involves

solv-ing a non-linear equation.
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p(a s ) given by equations (4-2),(4-3), (4-4) and (4-6)

in general requires solving a set of non-linear equations.

The problem can be made linear, however, by making

some specific assumptions of p(a,g,s I ) and/or including

as the parameters for estimation the auxilliary parameters

such as g and sI which are unwanted in the sense that our

primary interest is in estimating a. In the remainder of

this section, four such cases 4 are examined. In case 1,

all of the parameters a, g and s I are jointly estimated

assuming no a priori information of the parameters. The

estimate fir a that results corresponds exactly to the

covariance method of the linear prediction analysis.

In case 2, s I is assumed to be known and a and g are estima-

ted jointly assuming no a priori information of a and g.

Depending on specifically how sI is assumed known, this

corresponds to estimating a using either the covariance

method or correlation method of the linear predicticn

analysis. In case 3, g is assumed to be known and a

and sI are jointly estimated assuming no a priori infor-

mation of s1 . In case 4, only a is estimated assuming g

and s I are known.

I.
:V.3.1 Case 1

In this case, p(ag,s s) is maximized with respect

4 These are the only four cases in which the soluticn can
be obtained by solvina a set of linear equations.
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to a, g and sI with the assumption that no a priori

information of a, g or s is available. This corresponds

to the case when p(a,g,s1 ) is constant . From equation

(4-3), since p(So) is not a function of a, g, or sI and

p(a,g,s ) is assumed to be constant, maximizing

p(a,g,s 1iJo) is equivalent to maximizing p(Soa,g,si).

Thus, the MAP estimation of a, g and sI in the absence of

a priori information reduces to the ML estimation of

those parameters.

From equation (4-6), maximizing P(Soa,g,si) with

respect to g leads to

2 1 (s(n) T 2
g = N • - .s(n-l,n-p)) (4-7)

n=0

Maximization of p(Soja,g,si) with respect to a and sI

is equivalent to minimizing z given by

1 N-1 TEp -7 . (s(n) - a .s(n-l,n-o)) (4-8)
g n=0

Thus we choose the parameters a and sI to satisfy the set
5As the variance becomes larger, the density function becomes
wider and flatter approaching a constant. More formally,
however, it should be assumed that p(a,g,s I ) is Gaussian

I. whose covariance approaches an arbitrarily large value.
In all the cases in this thesis where we assume that no
a priori information of some parameters can be modelled by
a uniform density cf the parameters, It can be shown that
-he same theoretical results are obtained by first solving
the case of finite variance and then letting the variance
approach .

o'I
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of equations

= 0 for i = 1,2. ..... p (4-9a)a .i

s(-j) = 0 for j = 1,2, .... ,p (4-9b)

Rewriting equation (4-8) as

=1 p-i -T2C" 1o = -2 " s n) -a T .s (n-l,n-p))2
p 2 (s(n __

g n=0

N-i T 22 _ (s(n) - a "s(n-l,n-o))2, (4-10)
g n=p

only the first of these summations involves the initial

condition vector s1. It is straightforward to show

algebraically that for any non-zero solution of the

parameter vector a, s, can be chosen so that the first

summation in equation (4-10) is zero. Since these are the

values which minimize s with respect to sI, they would

then correspond to the estimate of these parameters. Since

we are only interested in explicitly estimating the coeffi-

cient vector a, it is not necessary to solve for sI

Since the first term in equation (4-10) will always be

zero when s is minimized, the minimization of equation

(4-10) corresponds to minimizing with respect to a, the

function

N-I
1- "2 (s(n) - a .s(n-,n-p)) (4-11)

g n=p
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Setting the partial. derivatives of equation (4-11)

with respect to each of the coefficients a. to zero

results in a set of linear equations given by

N-1 T
[. (s(n) - a .s(n-l,n-p))-s(n-i)=O, i=l,...,p (4-12)

n=p

Equation (4-12) corresponds exactly to the equations

obtained by the covariance method of the linear prediction

analysis [7,24].

IV.3.2 Case 2

In this case, we assume that the initial condition

vector sI is known and no a priori knowledge of a and g

is available. Then p(a,gjs O ) is maximized with respect

to a and g. From Bayes' rule,

p(a,g!£ o ) = p {Oa,a)p(a, g) (4-13)
P(s

and since sI is assumed to be known p(so a,g) represents

p( o0a,g,sI ) evaluated at s, equal to its assumed known

value. Assuming p(a,g) is constant, maximizing p(a,glio)

is equivalent to maximizing p(.oag) corresponding again

1.to the ML estimation of a and g. From equation (4-6) with

known si, maximization of p(soa,g) with respect to a leads

to equation (4-7) for g 2  Maximization with respect to a

is identical to minimizing - given by equation (4-8)
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However, the minimization is now carried out with respect

to a alone. Comparing equations (4-10) and (4-11), we

see that the function to be minimized with respect to a

is similar in both cases, differing only in the lower

limit of the summation. The linear set of equations for

a is now given by

N-1 TZi (s(n) - aTs(n-l,n-p))s(n-i) - 0

n=0
i=l,2,...,p (4-14)

If the initial conditions are indeed known, then we

in fact have available N+p observations of s(n). From

the N+p observations, we use the first p observations to

form the initial condition vector s I and the remaining N

observations to form the observation vector .. If we

consider the relationship between case 1 and case 2 on

the basis of the same total number of observations, then

in fact they lead to identical functions to be minimized

and consequently identical estimates.

In the above case, we have assumed that p(a,g) is

constant and s is exactly known. Therefore, maximization

of p(a,gs_) was identical to maximizing p(sIa,g).i.. Because maximization of P(Soa~,g) with respect to a and

g in this case corresponds to the ML estimation for a and

g given (conditioned on) the initial condition vector

1. = a(-l,-p), it is sometimes referred to as the

.. .. .r ... ..... .u . . .. ........ ... ...
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Conditional Maximum Likelihood (CM1L) estimate of a.

As an alternative to using the first p observations

in each analysis frame to form the initial condition vector,

we can assume that the response was zero prior to the

observation interval. In this case, assuming that we have

a total of N actual observations, we augment these with

p additional zero values. Now, if we further extend the

data by p points and augment s(N+p-l,N) with zeroes, then

maximization of p(a,gjs(N+p-l,0)) with respect to a and

g leads to

N+ 1I T
(s(n)-a -s(n-l,n-p)).s(n-i) = 0

n=0

for i=1,2. ..... p (4-15)

and s(N+p-l,N) and s(-l,-p) are all 0. This is exactly

the same equations given by the correlation method of the

linear prediction analysis. In the context of the linear

prediction analysis, the principal advantage of the correla-

tion method over the covariance method has been that in

that case, the solution of the set of equations involves

the inversion of a Toeplitz matrix for which there are

particularly efficient methods [30]. In addition, the

resulting all-pole model is guaranteed to be stable. From

equations (4-12) and (4-15) the resulting linear equations

to be solved in both methods are given by

I...-low
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T

J(s(n) - a Ts(n-l,n-p)).s(n-i) = 0, i=1,2 .... ,p (4-16)
n

and the summation extends from p to N-I for the covariance

method and from 0 to N+p-i for the correlation method.

IV.3.3 Case 3

Now we consider the case when g is known so that

* p(a,siI o) is maximized with respect to a and sI and

no a priori information of sI is available so that

p(sI ) is constant. Assuming p(a,s I) = p(a)-p(s I), from

Bayes' rule

(, s( Ia,s) .p (a).ps)(4-17)I o  - p Q10)v

where p( oa,s 1 ) represents p( oja,g,s) evaluated at g

equal to its assumed known value. Since p(s I ) is assumed

constant, maximizing p(a,s1 1o) is equivalent to maximizing

'as I )"p(a). Assuming that a has a Gaussian density

with mean a and covariance function P0 ' p
(a) is of the

form

pa - ( p/2 . 01/2•exp[-L(a-a) "P0  -(a-a)]

(4-18)

Combining equations (4-6), (4-17) and (4-18), it can be

seen that maximizing equation (4-17) is equivalent to
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minimizing given by
p

SN-i T 2 T 12 Z (s(n) a "s(n-l,n-p)) + (a-a) 'P 0 (a-a)
g n=0

(4-19)

e in equation (4-19) is similar to e in equation (4-8)p p

or (4-10) but with the additional term (a-a) "P 0 (a-a).

Since this extra term is not a function of Si , minimization

of Ep in equation (4-19) with respect to sI requires that

sI be such that

p-i T 2
1 (s(n) - a "s(n-l,n-p)) 0

n=0

Therefore minimization of e in equation (4-19) withp

repsect to a reduces to minimization of E given by

N-i T 2
- (s(n) - a .s(n-i,n-p)) + (a- 0)T Pv "(a-a) (4-20)

g n=p

Partial differentiation with respect to a. for i=1,2 .... p
I

results in a set of linear equations.

If no a priori information on a is assumed so that

'pO = a 2 1wt 2
0 d'I with ad arbitrarily large, the _ obtained in

this case would be identical to & in case 1.

IV.3.4 Case 4

Now we maximize p(ai with respect to a assuming

N - -
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that g and s are known. From Bayes' rule,

p(s Ia) p(a)
p(as = P(o )  (4-21)

and since g and sI are assumed known p(S oa) represents

p(soja,g,si) evaluated at g and s, equal to their

respective assumed known values. Therefore maximizing

p(ai1O) is equivalent to maximizing p(SoJa)-p( a).

Assuming p(a) is of the form given by equation (4-18),

maximizing p(aI .) in equation (4-21) is the same as

minimizing the same s in equation (4-19), which canp

be easily seen by comparing equations (4-17) and (4-21).

Here, however, we minimize e with respect to a alone,p

which again corresponds to solving a set of linear equations.

The difference between equations (4-19) and (4-20) is

in the limit of the summation, analogous to the difference

between equations (4-10) and (4-11). If we assume no a

priori information of a, then the second term in equation

(4-20) would be eliminated and the estimate for a obtained

in this case would be identical to that obtained in case 2.

If we assume that ,= and further extend the

data by p points with 0 (i.e., s(N+p-l,N) = 0) as we did

in case 2, then the equation to be minimized is given by

T 2 Ti -
2 (s(n) - a .s(n-1,n-p) ( a-a) .P0 (a-a)

g n= 0
(4-22)



-93-

with s1 and s(N+p-l,O) both equal to 0. In the limiting

case, as P0 approaches .I, corresponding to no a priori

information of a, the minimization of ep in equation (4-22)

reduces to equation (4-15) which corresponds to the

correlation method of the linear prediction analysis.

In the above discussion, we saw that maximizing

p(allo) leads to a set of linear equations only when g

and sI are known. In practice these parameters may not

be known exactly. However we might expect to make some

reasonable guess of g and sI' Alternatively, we can solve

the linear equations in case 1, assume that these

estimates of q and sI are exact and maximize equation

(4-21) with respect to a. A third possibility for obtain-

ing s, is to use the first p data points as s, and use

the remaining N-p points as O which leads to the same

estimate of a as in case 3.

in this section, we have seen that maximizing o(a!

in general is a non-linear problem. However the =roblem

can be linearized if we make some specific assumptions about

the a priori density of the parameters and/or include as

parameters for estimation some auxilliary parameters such

as g and s1I As will be discussed in Chapter V, the notion

of including as parameters for estimation some auxilliary

parameters and making some specific assumpticns of the a

priori information on the parameters will again lead to two

linear implementations when we deal with the statistizal
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parameter estimation from noisy speech. In Section

IV.4, we investigate an alternative way to solve the same

parameter estimation problem discussed in Section IV.3.

IV.4 State Space Approach: All Pole Coefficients as

State Vectors

In Section IV.3, g and sI were assumed to be known

and estimating a by maximizing p( a!s) led to solving a

set of linear equations. By representing the model of

speech in a state space form, the same solution can be

obtained in a recursive manner by a Kalman filter. In

Section IV.4.1, the properties of a Kalman filter

relevant to our discussions in this thesis are briefly

summarized. In Section IV.4.2, based on the properties

of a Kalman filter discussed in Section IV.4.1, it is

disscussed that a Kalman filter applied to the proper

model of speech maximizes p(a', ).

IV.4.1 Kalman Filter: Review

Suppose a system can be represented by a state

equation of the following:

x n) F(n) x(n-1) + G r.) u(n)

z(n) = Hn .x(n) ,(n) or 0 < n < N-. ( -3

where x(n) is a state vector,
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z(n) is an observation vector,

u(n) is a vector of zero mean white Gaussian noise

with a given covariance function,

v(n) is a vector of zero mean white Gaussian noise

with a given covariance function uncorrelated with

u(n) ,

and x(-l) is the initial condition vector which is

Gaussian with a given mean and covariance.

If F(n), G(n) and H(n) are known, then E[x(n)'z(nl,O)1

which is the optimum under the >IMSE criterion can be obtained

by a linear solution known as the "Kalman filter".

Depending on whether n is greater than, equal to, or

less than nI , the solution is known as a predictor,

filter or smoother, respectively. For - Gaussian x(n)

which is the case in equation (4-23) , the .MMSE estimator

is equivalent to the MAP estimator since p'x n,' z(n. ,O))

is sy.m-Imnetric about the ccnalticnal extectation -- x(n) z-, )

The detailed linear solutions of a Ka--L_.man filter and ':ts

properties can be found in [22,31,32,33,34].

IV.4.2 Maximization of p(a sO ) ov a Kalman Filter

Equation (3-8) of the speech model with u~n)=g-w(n)

is given by

as n) = a ... ..

s(n) = s kn-,n-9 ).a(n) +s cw(n) for 0 <- n N-I K4-24
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Equation (4-24) is a special case of equation (4-23). If

g and s I are assumed known, then F(n), G(n) and H(n) are

completely specified. Therefore, E[ajs(N-l,O)] which

corresponds to both the MMSE and MAP estimates of a can

be obtained by a Kalman filter. The filtering form [31,

32] of a Kalman filter applied to equation(4-24) is given

by aniterative solution;

&(n+l) = _(n) + k(n+l)•(s(n+l) - sT (n,n+l-p) .&(n)) (4-25)

where A(n) represents E[a(n)Is(n,O)] and k(n+l) is the

Kalman filter gain which is a function of the covariance

matrix of a(n). The covariance matrix of a(n) can also

be updated and the initial starting values a_(-l) and the

covariance of a(-l) are, of course, the a priori mean and

covariance of a. For each n, a(n) obtained in this

manner is identical to a estimated by minimizing the

function

1 n T 2 T -1
2 1 (s(m) - a -s(m-l,m-p)) + (a-a) -P0  (a-a)

g m=.O
(4-26)

In particular, a(N-1) is the estimate of a obtained by

minimizing equation (4-19) with respect to a. The filtering

form of the Kalman filter solution discussed above is also

known as a recursive least squares procedure and the primary
1°_

q Ik il"i -- " - .- -- . .. . - . . . . . .. . i f l n l . . . .. .
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advantage of a recursive solution is that the data can

be sequentially processed as they appear.

I.

1" 2'

,
L - ., ,
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CHAPTER V STATISTICAL PARAMETER ESTIMATION FROM

NOISY SPEECH

V.1 Introduction

In chapter rv, a framework was established for the

MAP parameter estimation of the noise-free speech. In

two of its forms, leading to equations (4-12) and (4-15),

there has been extensive experience in the context of

the linear prediction speech analysis with considerable

success and are currently the basis for many speech

processing systems (7,8,12,14,24,25,291. It is well

known, however, that these procedures degrade quickly in

the presence of additive background noise [2,31. Conse-

quently, it is of interest to consider whether the same

basic approach and philosophy can be applied when the

observations are recognized to be corrupted by the back-

ground noise. Thus, in this chapter, we consider the

statistical parameter estimation from the noisy speech

based on the M1AP estimation procedure.

in our discussions in this chapter, we first consider

the case of the white Gaussian background noise and then

extend the theoretical results obtained to a more general

case when the background noise is colored. In Section

V.2, the XAP estimation procedure that maximizes the

probability density function of the parameters to be

estimated conditioned on the noisy speech vector will

be shown to be a non-linear problem. In Section V.3, we
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develop a linear iterative algorithm which approximates

the MAP estimation procedure. In Section V.4, we develop

another linear iterative algorithm by revising the method

discussed in Section V.3. In Section V.5, we extend the

theoretical results discussed in Sections V.2, V.3, and

V.4 to a more general case when the background noise is

colored. In Section V.6, we relate the two linear itera-

tive algorithms to the MAP estimation procedure.

V.2 MAP Estimation Procedure: A Non-linear Problem

Speech is again assumed to be generated by the model

of equation (4-1) and the coefficient vector a are the

basic parameters to be estimated. The observation vector

y(N-l,O) which will alternatively be denoted as

consists of the sum of the speech and background noise,

i.e.,

Z(N-1,O) = s(N-l,O) + d(N-iO) (5-1)

where d(n) is zero mean white Gaussian background noise

2with variance of ad and is assumed to be uncorrelated

with s(n).

Following a procedure sLnilar to that of case 4

(Section IV.2.4), we can consider choosing the parameters

a to maximize p(aly.). In Chapter IV when we assumed that

g and s were known and p(a) was Gaussian, the resultingI° , !.
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4
equations were linear. For the current situation, this

will no longer be the case. Specifically, from equations

(4-1) and (5-1),

y(n) = aT.s(n-l,n-p) + g-w(n) + d(n) (5-2)

or y(n) = a T.y(n-l,n-p) + g.w(n) + d(n) - a T.d(n-l,n-p)

(5-3)

Expressing p(yola,g,sI) in a manner similar to equation

(4-4),

N-1

P(ola'g'sI) = J p(y(n)ja,g,siY(n-l,0))

n= p
p-i

• Hp (y (n) 1a, g,sI,,YZ(n-1, 0))

n=i

p(y(0) ja, g,s ) (5-4)

From equation (5-2), for n > p, p(y(n)ja,g,siY(n-l,0))

is Gaussian with mean of aT'E[s(n-l,n-p) ta,g,s,Y(n-l,0)]2 2  a T_ _

and variance of g2 + ad + - "Var[s(n-l,n-p)Ia,g,s1,Y(n-l,0)l-a
where E[s(n-l,n-p)Ia,g,si,Y(n-l,0)] and Varts(n-l,n-p)

Ia,g,s 1 ,Y(n-l,0)] denote the mean and covariance of

s(n-l,n-p) conditioned on a,g,s1 and v(n-l,O). Since the

variance is a function of a, and will likewise be so for

the remaining terms, the resulting equations for maximizing
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p(alI O ) will by necessity be non-linear.

Even though we have only shown that maximizing

p(aly O ) which corresponds to case 4 in Chapter IV 
is

a non-linear problem, it is easy to see that maximizing

p(a,g,sI jy0 ), p(a,gI O ) or p(a, ! O.. ) corresponding to

cases 1, 2 and 3 in the previous chapter is also a non-

linear proble. This is partly because each of the three

density furtctions p(a,g,s.Iy.0 ), p(a,g O ) , or p(a,sI o )

is a product of several terms, one of which is

N-1

TI p(y(n) a,g,s.,y(n-l,0))•
n=p

It was shown above that p(y(n)ja,g,s1 ,Y(n-l,0)) for

p < n < N-. has the variance which is a function of a.

V.3 Maximization of p(a,.ojyo): Linearized MAP (LMAP)

Estimation Procedure

To maximize p(alyo) which was shown to be a non-

linear problem in Section V.2, one approach is to determine

p(aIy O ) for any set of specific a and then use some form

of hill searching algorithm [35,36,371. In general,

solving such a non-linear problem is computationally

undesirable. Thus, we are led to consider another method

which has a linear implementation, but which may not be

optimum in the sense that p(aIl0 ) is not maximized. In

12, Chapter IV, we have seen 
that maximizing p(a!so) 

is in
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Igeneral a non-linear problem. However, by incorporating

some auxilliary parameters as parameters for estimation

and/or making some specific assumptions on the a priori

knowledge of the parameters, the resulting equations can

be made linear. When the resulting equations (4-12 , 4-15,

4-20, 4-22) are used to estimate a and speech is syn-

thesized based on the estimated a, experience [7,8,24,251

has shown that intelligible speech with high quality can

be generated. Motivated by the apparent success in the

case of noise-free speech, we take a similar approach in

the case of noisy speech. More specifically, we assume

that g and s I are known, and include the speech vector

p0 as an additional parameter to be estimated. Thus we

maximize p(aoIko6 jointly with respect to a and 20.

In this section, we show that maximizing p(a,SolY O ) is

still a non-linear problem but can be implemented by a

linear iterative procedure.

V.3.1 An Algorithm to Maximize p(a,EOI O )

Suppose we begin with an assumed set of initial

6A linear implementation for a can also be obtained
essentially in a parallel manner by maximizing p(a,so,g,

* £if' , p(a,~gly O) or p(a, osiI 1 ) with the appro-

I. . priate a priori density assumptions of the unknown para-
meters. This situation is analogous to the four cases

, considered in Chapter IV and allow us to estimate the
other parameters (g,s,) in the same manner as a if such

an approach is desired. In the discussions in this chapter,
we concentrate primarily on maximizing p(a, SO{ ).

1 I I .. . I . - . . . . . .. - - i a , 1 . . ... . . " ' . . ' . .
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values 1-0 for the coefficient vector a and based oa this,

estimate 10 by maximizing p(20,yO). Denoting this

first estimate of O by s-o' we then form a first estimate

- of a. This procedure can then be continued iteratively

to obtain the final estimate L of the coefficients. We

now show that this procedure for estimating a (and so)

always increases p(a,1oIyO ) at each iteration unless

a converging solution is obtained. Specifically, since

A. is obtained by maximizing p(alo ),

p(& _i  O .P( i I 0)> p i-_12.:1 1 1- - i Y

S -iYO) (5-5a)

and therefore

(. § ^ Izo) > ^ 1YI0) (5-5b)€-i'=Oi - p i aI'Oi

The equality sign in equation (5-5b) holds only if ai=a.

since p(alSO,yO) is Gaussian in a. Since Soi is obtained by

maximizing p(2o1^ _yO),

*P(g a is. > P(g S-IO' P¢ ;-i I~-'O P¢ - ~ > p€i-l !_ _l '- -1

(5-6a)

and therefore
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i_ 1 -O v2i-l> p (5-6b)

The equality sign in equation (5-6b) holds only if

- since .EOIyo) is Gaussian in so. From
-Oi -i ne-(a~
equations (5-5b) and (5-6b),

a.-' lo > P(&-i 1 i- IYo) (5-7)

in which the equality sign holds if a. = and
-I -i-l

9-i = -Oi-l" Equation (5-7) shows that the iterative

procedure discussed above always increases p(a,soy O ) at

each iteration unless a converging solution is reached.

If the initial guess for a and the shape of p(a,2o1y O ) is

such that this procedure converges to the global maximum,

then this procedure will in fact correspond to that

joint MAP estimate of the parameters a and 20. Thus,

in essence, this attempt to simplify the problem computa-

tionally corresponds to augmenting the desired set of

parameters a with the additional parameters 20.

V.3.2 Maximization of p(so1ao)

From the discussions in Chapter IV, maximizing

I| p(als,yo) which is equivalent to maximizing p(als)

requires the solution of a set of p linear equations for

a. To show that the algorithm requires solving only

linear equations, we now show that maximizing p(.o0 a,yo)
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is also a linear problem.

From Bayes' rule, p(S0Ia,yo) can be denoted as

0 p(.Sa,20 )" P(-0a (5-8)

Denoting p(yIa,1o) by

N-i

p(-a o  ) -- 10 T p(y(n)l,0 ,y(n-1,0))
n=l

p p(y (0) ls_,a o )  (5-9)

and noting that p(y(n) Ia,So,y(n-l,0)) is Gaussian with
mean of s(n) and variance of a2 for 1 < n < N-i and

d
p(y(0) Ia,2o) is Gaussian with mean of s(0) and variance

of a2, p(yoja,SO) can be denoted as
p(loasO) =__1 (_ 1 N-I

P(dO, 2N/2 exp( 2 (y(n)-s(n) ) (5-10)
(2 Ta d) 20d n=0

Combining equations (4-6) and (5-10) with equation (5-8) with

the assumption that g and sI are given and noting that

p( oa) is not a function of 1O,

,I 1 1

Ops<1a, Y) = constant 2 exp(-- Eo ) (5-11a)(4Tr "g .d )

and N-i T 2 N-i 2
= 2 " (s(n)-a Ts(n-l,n-p)) + - (y(n)-s(n))

n=0 ad n=O~(5-11b)
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Maximizing p(. Oa,yo) is equivalent to minimizing E: in

equation (5-11b) and thus we choose EOthat satisfy the

set of linear equations,

P 0 for i =0,1,2 ...... N-1 (5-12)
as (i)

A closed form expression for the solution of equation

(5-12) can be obtained by representing the speech model

with equation (3-6). From equation (5-1),

p(y(N-l,0)ja,s(N-l,0)) = p(y(N-l,0)Is(N-l,0))

= N (s (N-1, 0) , a 2. (5-13a)

From equation (3-6e) with u(n)=g-w(n),

p (s (N-1, 0) 1a) = ZT ((I-A) 1.AI*lC 2. (- 1. ((-1)T

(5-13b)

we now combine equations (5-13) with equation (5-8)

assuming that g and sIare given and noting that p(y 9 a) is

not a function of The result is that

p (s (N-1, 0) v~ R )Y+R *'n)

d d

'I(R + -2-I ) (5-14a)
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where

m (A *AI*.S and R g2. (I-A)- 1.(I-A) T
--s I s

(5-14b)

Therefore, maximizing p(S0 a,yo) is equivalent to estima-

ting 20 by

,. [£oao] -l1 2.)-1 1 OR -
-• .m ) (5-15)

=d ad

An alternative way to maximize p( a,y) is from

the smoothing form [33,341 of a Kalman filter. As we

discussed in Section 111.3, equation (3-13) of the

noisy speech model can be represented in the form of

equation (3-7) with x(n), F(n), G(n), u(n), z(n), H(n)

and v(n) given by equation (3-9). As we discussed in

Section IV.4.l, it is well known that for equation (3-7)

with zero mean white Gaussian u(n) and v(n) uncorrelated

with each other (this corresponds to equation (4-23)),

the smoothing form of a Kalman filter leads to

E[x(n) Iz(N-l,0), F(n)] for n=0,1,2. ..... ,N-1 which corres-

ponds to E[S!Oa,yo]. Since P(so~a,o) is jointly Gaussian,

E[ ola,y] is also the MAP estimate of , that maximizes

p (. o a2, y_). The Kalman filtering approach has an advan-

tage in that only pxp matrix (the state x(n) has p elements)

operations are required while equation (5-15) requires

NxN matrix operations.'I
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V.3.3 Linearized MAP Estimation Procedure

Summarizing the steps involved in the linear imple-

mentation method, we have

Step 1: Begin with &i' the ith estimate of a.
Step 2: Obtain 9 -i the i+lst estimate of 20, by

=i +1

solving equation (5-12), from equation (5-15),

or from the smoothing form of a Kalman filter.

Step 3: Obtain i+l, the i+lst estimate of a, by minimiz-

ing equation (4-19) with - obtained in-0

Step 2.

The above steps complete one iteration and the procedure

can be continued for as many desirable number of iterations.

The initial estimate 0 may be obtained by simply applying

the correlation method of the linear prediction analysis

to O. We'll refer to this algorithm as the "Linearized

MAP" (LMAP) estimation procedure.

In our discussions so far, we have assumed that g

and s are known. Even though these parameters are not-I

known exactly, we might expect to make some reasonable

guess of g and si For example, in the LMAP estimation

procedure, for each iteration when Step 2 is completed,

we have an estimate of O Before going to Step 3, we

could maximize p(a,g,IL,0o) that leads to equations (4-7)

and (4-9) from which g and sI can be estimated. Then we
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can assume that these estimates are exact and use them

in step 3 in the current iteration and step 2 of the

next iteration. Another possibility for estimation g

and sI is to jointly estimate a,g and sI in step 3 from

e0 stimated in step 2 with the assumption of no a

priori information of g and a general Gaussian density

assumption of a and s V An example of p(s I) could be

N(y(-l,-p), a I). In Section IV.3.1, it was shown

that p(a,g,II(Jo) could be maximized by solving a set of

linear equations if no a priori information of a,g and

is available. When a priori information of a and

is available, jointly maximizing p(a,g,2.O1 ) is a

non-linear problem. However we can again solve iteratively

by maximizing p(a,s ig,SO) with respect to a and and

then maximizing p(ga,g,s 1So) with respect to g for each

iteration. Maximizing p(a,i 1Ig,SO) again involves an

iterative procedure in which p(als 1ig,s ) is maximized

with respect to a and then p(2 1 a, g,SO) is maximized with

respect to sI for each iteration. It can be shown7 that

the above procedure never decreases p(a,g,iI o) at each

iteration. Maximizing p(alsig,SO), p(s ia,g,SO), or

p(gIa,iSo) involves 8 solving a set of linear equations.

7This statement can be proved in an analogous manner as
in equations (5-5), (5-6) and (5-7).

8The derivations are similar to the derivations in the
four cases (Sections IV.3.1, IV.3.2, IV.3.3, and IV.3.4) and
they begin from equation (4-6).
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A third possibility for sI or g is simply to assume that

SI = 0 as we did in case 2 (Section IV.3.2) which led to

the correlation method of the linear prediction analysis,

and estimate g from the energy considerations which will

be discussed further in Chapter VI.

The discussions so far were based on the assumption

that the primary interest is in the estimation of a. It

is important to- note, however, that the LMAP estimation

procedure estimates s in the process of estimating A by

= E[lolO]. go estimated in this manner can be

directly used as enhanced speech. Therefore the LAAP

algorithm discussed in this section can be used not only

for the bandwidth compression but also for the enhancement

of noisy speech.

V.4 Revised Linearized MAP (RLMAP) Estimation Procedure

V.4.1 Motivation for the Revision

A careful observation of the LMAP estimation proce-

dure discussed in Section V.3 leads to another estimation

procedure that again requires solving a set of linear

equations in an iterative manner. In step 2 of the L4AP

estimation procedure, we estimate i0 by E[So01,yO]. In

step 3, we note that the MAP estimate of a corresponding

to maximizing p(aj O) uses the values p. to form products

of the form s(i).s(j). Thus estimating 0 in step 2 by

E(j ISaO] corresponds to estimating s(i).s(j) as
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s(i) s(j) = E(s(i) a,o] • E(s(j)Ia,ko] (5-16)

As an alternative, we can consider generating directly the

MMSE estimate of the product s(i).s(j). Thus the estimate

of s(i)'s(j) is given by

s(i)"s(j) = E(s(i)"s(j)Ia,yo] (5-17)

In this method, then, we follow the same procedure as we

did in the LMAP method with the difference in that

s(i).s(j) is estimated by equation (5-17) rather

than equation (5-16).

V.4.2 Estimation of s(i)'s(j) by E[s(i)'s(j)Ia,yo]

In this section, we show that E(s(i)-s(j)!a,yo]

can be obtained by solving sets of linear equations.

From the expression of p(SoIa,yo) in equation

(5-11), E in equation (5-11b) can be written as
p

N-i N-1
I = i j (s(i) - mi ) "(s(j) - mi) + constant

P i=O j=0
( 5-18)

I. I-Since p(soIa,yo) is jointly Gaussian in 0 [ i

Z- (3 j is

a covariance matrix for 2O conditioned on a and zO where

[3ij] represents the inverse of a matrix whose ijth

element is 3 Denoting this covariance matrix by [y ij]
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(i.e., [yij] = Bij 1 - ),

yij = E((s(i)-E[s(i)]a,o]). (s(j)-Efs(j)Ia,X01) aio]

= E(s(i)-s(j)ja,o]-E[s(i)Ia,y o ] .E[s(j)I a,yo] (5-19)

Therefore,

E(s(i)'s(j)ja,yo] = Yij+ELs(i)1a,yol.Es(j)a,YO] (5-20)

in which [Y ij] is given by B ij].

A closed form expression for yij and therefore for

E(s(i).s(j)a,yo] can be obtained by representing the

speech model with equation (3-6). From equation (5-14),

P(So l a,y O ) is given by

P(Sola,o) = N(m,V) (5-21a)

in which

-1 1 -1 1 -lm_ (R 1 + -I) ( -'_+R ms) (5-21b)
ad ad

and

v_ ij I1 = (R- (5-21c)

where m s and Rs are given by equation (5-14b).

Since

= EL(o-EEo;,yo]) • (jO-E([Oia,O]) T

ri .i is....
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- E o-10&,yol - ECISy1-E YT,1 (5-22)

ECio- ,01S~y - V + EC 11,y 1"EC-IIyo" v+m.mT (5-23)

in which m and V are given by equation (5-21). Equation

(5-23) is a closed form expression for E[s(i)'s(j) a,yo]

for Oi, j<N-1.

An alternative way to obtain Yij in equation (5-20)

is by representing the noisy speech model with equation

(3-13). When u(n)=g-w(n), equation (3-13) is a special

case of equation (4-23). Then from the smoothing form of

a Kalman filter, we can obtain the covariance function

of the states conditioned on all the observations and

known matrices such as F(n), which in our case directly

leads to yij. The Kalman filtering approach has an advan-

tage in that only pxp matrix operations are required while

equation (5-23) requires NxN matrix operations.

I.

1°'
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V.4.3 RLMAP Estimation Procedure

Summarizing the steps involved in the linear imple-

mentation,

Step 1: Begin with the ith estimate of a.

Step 2: A. Obtain the i+ilst estimate of

!o, by solving equation (5-12), from

low equation (5-15) or from the smoothing

form of a Kalman filter.

B. Obtain Bij from equation (5-18) and ij
-1

from (Yij = B ij] , or obtain yij

from equation (5-21c), or from the

smoothing form of a Kalman filter.

C. Estimate s(i).s(j) from equation (5-20)

with the results obtained in the steps

A. and B. above, or estimate .O' from

Equation (5-23).

Step 3: Obtain i+l, the i+lst estimate of a, by

minimizing equation (4-19) with s(i).s(j)

Tor s_.s obtained in Step 2.

The above steps can be continued for as many

desirable iterations. The initial estimate a can be

obtained by simply applying the correlation method of the

linear prediction analysis to . Like the LMAP case,

1
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there are a number of ways of obtaining g and sI which

are the assumed known variables in the algorithm. The

possible methods discussed in Section V.3 are equally

applicable to the algorithm discussed in this section.

We'll refer to this algorithm as the Revised Linearized

MAP" (RLMAP) estimation procedure.

To emphasize the difference between the LMAP and

RLMAP algorithms, a block diagram that represents one

iteration of the two algorithms is shown in Figure 5.1.

The only difference between the two algorithms is an

additional term V in estimating O' 5T in +he RLMAP--00
algorithm. Compared with the LMAP algorithm discussed

in Section V.3, the RLMAP algorithm is computationally

less tractable. As will be discussed in Chapter VI,

however, when N is assumed to approach -, the RLMAP

algorithm is slightly more complex in its computation

than the LMAP algorithm. In the RLMAP algorithm, there

are at least two ways 20 can be estimated. One way is

to use - obtained in Step 2A. This is equivalent to
-0

estimating i0 by E[Sa,yO]. Alternatively, !O can be

estimated by forming s(n) from s(i).s(j) and assuming

some phase of s. The estimated - can be used as enhanced

speech if speech enhancement is desired.

V.5 Extension to Colored Background Noise Case

Our discussions in Sections V.2, V.3 and V.4 are

r .
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For LMAP a*" IT0 0

= m-m
For RLMAP = E [ Ia

Sm. mT+ V

Obtain a by minimizing

equation (4-19) with s o.r

* Figure 5.1 One iteration of LMAP and RLMAP algorithms.

m and V are given by equation (5-21) in the text.

1" "
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based on white Gaussian noise as the additive background

noise. In this section, the theoretical results are

extended to the case when the background noise is Gaussian

but colored. When the background noise is colored, all

the discussions in the previous three sections remain

unchanged except that estimating T02 by E(solS,.O]

E1T 4 o oE.2-T•E[s0a,vo or E[so.ja,yo] should again be shown to

be a linear problem.

From equation (3-6e) with u(n) = g.w(n), equation

(5-14) can be easily generalized as

p (s(N- 1 -, 0)- -o)

s(R dR') 1.(Rd1 y.0 + R *.m) (R- +Rd (5-24)

in which
-i

m = (I - A) A s
2 -I -

R = g2 -(I - A) 1 ((I - A) 1 T

Rd = Etd(N-1,0)d T(N-1,O)]

which is obtained from the assumed known statistics of d(n),

and A and A are defined in equation (3-6).

Equation (5-24) can be used to show that estimating
Oby E[Sia,] and TO' by EjSOlla,yo] are still

linear problems since

-l
E(Ej~ 1=(- 1 + -R )-l y -l

E oIa, o] -- (R sl Rd - ) (Rd .o + R - ) (5-25)

* -*.
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and E[So. T (Rsl + R) -

+ E( 0 Ia,Eol[CIa, x (5-26)

V.6 Relationship Among Maximization of p(alo), LMAP,

and RLMAP Algorithms

The LMAP and RIMAP algorithms have been developed

in this chapter by attempting to suboptimally maximize

P(alyo). Some recent theoretical work by Musicus [381

carried out in parallel with this dissertation shows

that a close relationship exists among the LMAP and RLMAP

algorithms and the problem of maximizing p(alyo). More

specifically, suppose that g is known and sI=O. Represent-

ing p(aIo) by f(a).exp(g(a)), the LMAP and RLMAP algorithms

increase q(a) and p(alI O ) respectively at each iteration

unless a converging solution is reached. Therefore if

g is assumed known and s I is assumed to be 0, then the

RLMAP algorithm is one way to maximize p(alyo). Further

theoretical work related to the above discussions is

currently under way and will be reported by Musicus [381.

I.

.
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CHAPTER VI IMPLEMENTATION: THREE NOISE

REDUCTION SYSTEMS

VI.1 Introduction

In this chapter, three noise reduction systems that

are implemented and evaluated are discussed. Two systems

discussed in Sections VI.2 and VI.3 are derived by

approximating the LMAP and RILMAP algorithms discussed in

Chapter V. Even though the LMAP and RLMAP algorithms

require solving only sets of linear equations or imple-

menting a Kalman filter, some approximations lead to

computationally simpler systems by making use of an FFT

algorithm. In Section VI.4, a speech enhancement system

discussed in Section 11.2.6 is summarized. The primary

purpose of implementing this system is to compare it with

the other two systems discussed in Sections VI.2 and VI.3.

Since the system summarized in Section VI.4 is probably

as good in its performance as any other speech enhance-

ment system summarized in Chapter II, such a comparison

can provide an indication of the performance of the two

systems derived from the theoretical framework of this

dissertation relative to other speech enhancement systems

previously proposed. The results of the evaluation of

I.. the three systems will be presented in Chapters VII and

VIII.
.'b.

1[J

.. . . . . . . . . . . .. -
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VI.2 System A

For each iteration of the U4AP algorithm discussed

in Chapter V, it is in general necessary to solve a set

of p linear equations to estimate a from ^ and N linear-o
equations to estimate sfrom &and Sic Ni

general is in the order of several hundred for a typical

application in speech, solving a set of N linear equations

simultaneously can be computationally tedius. Thus we

develop a procedure that approximates solving the set

of N linear equations.

From equations (5-11b) and (5-12),

92 Y~)si-p
2 1~~ a k*s(i-k) - I a k-s(i+k)

~ D 2
+ ~ a k'akg~~-Z -S

k=l Z=l aasi~~ d n si

for 0 < i < N-p-l C6-la)

2 N-l-i
-7--*yi)= s(i) a k' as(i-k) Z a ak-s(i+k)
a d k=l _~

+ a~ k.a Z's(i+k-Z) + 9 -. s(i)
k Z =l a d

with sCN+o-3,N) = 0 for N-p<i<N-2 (6.1b)

and

22 2
il... -y(i) =s~i) a ' a s( i-k)+g-si for i=N-l (6-1c)

ad k=l d

d d
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Solving equation (6-1) for s in general requires

solving N simultaneous linear equations. However, if we

assume that s(p-l,O) is also given as well as sI , then

the N equations do not have to be solved simultaneously.

More specifically, rearranging equation (6-1a),

pp-i

a ps(i+p) = s(i) - ak's(i-k) - ak*s(i+k)
k=l k=l

S2 2
+ 7 a *a 's(i+k-Z) + g i) .y(i)

k=l Z=l k a d

for 0 < i < N-p-i (6-2)

s(i+p) in equation (6-2) for 0 < i < N-o-l can be solved

individually if s(p-l,O) is given since the right hand

side of equation (6-2) involves terms of s(n) for n<i+p.

s(p-l,0), of course, is not given, but we could assume

s(p-l,0) = y(p-i,0). For N sufficiently large relative

to p, we would in general expect that the effect of

a specific assumption of s(p-l,O) is rather small.

In the above, we have developed a procedure which

does not require solving a set of N linear equations

simultaneously. However, solving for O from equation
, 2

(6-2) still requires in the order of N-p multiplications.

Furthermore, once 0 is estimated, the correlation

function has to be formed from 9 . An alternative approach

which is computationally simpler and leads to a system with

'I-
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a simple interpretation is to consider the problem in

the frequency domain. More specifically, z transforming

equation (6-1a) with the assumption that the difference

equation holds for all i (i.e., N=,=),

g2 p -k P k
--- Y(z) = S(z) - I ak.S(z) .z - ak.S(z) .z
ad k=l k=l

+ p .a S(z) . z + 2..S(z) (6-3)
k=l z=i ka

and therefore

SU = Y(U) s U (6-4a)2
Ps 2

where
2

P (U) = 9

1-2. Z ak.coskw + I ak' az cos(k-Z)w
k=- k=l Z=

2
g (6-4b)

k=l

Equation (6-4) is a non-causal Wiener filter. This result

is quite reasonable since it is well known that when

y(n)=s(n)+d(n) where s(n) is uncorrelated with d(n) and

the power spectral densities of s(n) and d(n) are known,

the MMSE estimate of s(n) from y(n) can be obtained by

a Wiener filter. For this reason, then, for a more general

'I-.-.. ._ ,i_ l
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case when the background noise is colored, the procedure

for obtaining s(n) by equation (5-20) is equivalent to

estimating s(n) by filtering y(n) with a linear, time

invariant filter with the frequency response given by

PS(W)
H(w) = F() + Pd(w) (6-5)

and Pd(M represents the power spectral density of the

background noise and P (w) represents the power spectral

density of speech given by equation (6-4b).

Theoretically, the non-causal Wiener filter requires

an infinite amount of data. In practice, we have only N

points of data that can be modelled as yw(n)=y(n).w s(n)

where w s (n) represents a sufficiently smooth analysis5t

window over the effective length of h(n). For a sufficient-

ly large N and small effective length of h(n) relative

to N,

(y(n).w (n)) * h(n) (y(n) * h(n))'w (n)

= s (n) -w (n) (6-6a)

and therefore v (n) * h(n) = s (n) (6-6b)1. W w

Based on equation (6-6b), sW (n) is estimated by

.- W
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sw(n) -Yw(n) * h(n) (6-6c)

We expect that the approximation given by equation (6-6b)

is not good for n close to 0 or N-i but is adequate for

0<<n<<N-1. For a sufficiently large N, it is expected

that the poor approximation at the edges of the window

do not have a large effect. From equation (6-6c),

A

S (W) = Y (W'H(W) (6-7a)

and ISw(W)l 2 =IYw(,)l 2 .fH(w) 2 (6-7b)

Now if equation (4-22) is used rather than equation (4-19)

in step 2 of the LMAP algorithm, the function that is

directly used in minimizing e in equation (4-22) can

be expressed as

0s(n) = I S (i)S w(i-n).i=- w

Then s^(n) and 0^(n) can be obtained by inverse Fourier

transforming Sw(w) and IS'(w)I 2 i.e.,
w w

I. Sw(n) = F- IS ()] = F- IY (W).H(W)] (6-8a)w w w

1s 2n - - Sw) F- w 2. H(w) 2 (6-8b)

O,..--, (n ) ,. (Is _.,- - . ..
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Denoting the M point Discrete Fourier Transform (DFT)

of a sequence x(n) by X(k),

•27r
M- k .n

X(k) = x(n)'e = X(W)
n=O27

Since x(n) is related (39] to the Inverse Discrete Fourier

Transform (IDFT) of X(k) by

[ x(n+k.M) = IDFT(X(k)],

equation (6-8) leads to

E sw(n+k.M) = IDFT(S w(k)] = IDFT[Y w(k).H(k)] (6-9a)

00 2 2
L OS ( n + k ' M ) = IDFT[s (k)] = IDFT[IYw(k)I .jH(k)j I](6-9b)

For a finite effective length of Sw(n) and %s(n) and for
w s

a sufficiently large M,

s (n+k.M) s w(n)
k=-CO

and

I0.|" [ (n+k'M) = s(n)

With this assumption, we estimate sw (n) and (n) by

1'-
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s(n) = IDFT (Y w(k) H(k)) (6-10a)

(n) = IDFT (jY w(k ) 1. 1H(k)f 2) (6-10b)

s(n) in equation (6-10a) can be used as enhanced speech.

O(n) in equation (6-10b) can be used to estimate the

aby minimizing e in equation (4-22).
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Now, we summarize the specific algorithm that has

been implemented and evaluated.

Step 0: Obtain _,l the initial estimate, by the

correlation method of the linear predic-

tion analysis assuming s w ( n ) w(n)

Step 1: Begin from ai , the ith estimate of a.

Step 2: A. Estimate g by an energy measurement;

n w 2 (n) 2
n _ T _ _ _ _2 2 22
2 sT f • dw= I Yw (n)- w(n)ad

T I -jkw 2 n n2kL - Il  a k'e

k=l a

where a corresponds to a..

B. Estimate s(n) by IDFT [IYw(k)I 2.H(k)I2 ]

where

H()= s with P (M) =
P (w) +Pd() s -jk 21I - Z a k'e

k=l

and a corresponds to .. If § (n) is desired

for speech enhancement and if this is the

last iteration desired, s (n)=IDFT(Y(k).H(k)).

Step 3: With the first p+l points of s(n) and a and P0
5 0

|° given by the available a priori knowledge of a,

estimate the LPC coefficient vector ai+ 1 by

minimizing equation (4-22). In the case wi'en

no a priori information is available, we let P0

r - -
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approach --I thus reducing the minimization of equation

(4-22) to the correlation method of the linear

prediction analysis.

The above steps complete one iteration and we'll

refer to the above system as System A. It is noted that

System A can be used to estimate s w(n) as well as a,

and that System A does not require an estimate of S1.

Further, it is noted that the phase of S(w) estimated

in System A is the same as the phase of Y(w). This is

because the frequency response of a non-causal Wiener

filter H(w) is real and positive and thus zero phase. In

various speech enhancement systems discussed in Chapter II,

we have seen that the phase of S(w) used is the same as

the phase of Y(w).

VI.3 System B

In Section VI.2, System A was developed based on

the LMAP estimation procedure discussed in Section V.3.

In this section we develop a system that is based on the

RLMAP estimation procedure discussed in Section V.4.

From equation (5-20), the difference between the LMAP

and RIMAP estimation procedure is the additional term ij

I.
in estimating s(i) s(j). The system developed in this

section is a modification of System A that incorporates

the term y.
ij .
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In general, to obtain y it is necessary to performi[Y
at least an inversion of an NxN matrix since Cy =

-1

[ ij .1 However, as we let N approach -, a computation-

ally simpler procedure can be developed. More specifically

for a very large N, from equations (5-11b) and (5-18),

aij can be expressed as

8ij 2=- 'ij + 6ij (6-11a)

where

Oij -- -2 (~k k for j i-j I=0

7 ai i 21~ ~ij

g g k=l

for 0< li-j I<P (6-11b)

1 for fi-j =p2 -- • l
g

=0 for li-j I>p

and

1 =-- for ji-jI=0%i 2

d (6-ic)

0 otherwise

From equation (6-l1), since a and i depend only on

the time difference i-j, representing aij, 9ij and 3ij by

r" -'
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((n)=e(i-j)=eij and $(n)=B(i-j)=Bij,

$(n) = a(n) + e(n) (6-12a)

where a(n) = -. (i+ ak) for InI=0
g k=1

1 + P-LnI
g g k=1 k k+InI

for O<Inl<p (6-12b)

1 alnI for lnl=p
g

= 0 for Inj>p

and e(n) = 1 for n=0

ad (6-12c)

0 otherwise

From equation (6-12b), taking the Fourier transform of
9

a(n)
2 -1

A(w) = FE(an)] = ( .,) (6-13)Ii - L ak .e-jk 2

k=l

9 This result can alternatively be obtained by noting that

( ij]- is the covariance matrix of p(ioia) and that for N

approaching -, a depends only on the time difference i-j.

1.J
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From equations (6-4b) and (6-13),

A(M) = 1i(-) (6-14a)
P s(W)

2
and P (W) = j (6-14b)

- a kejkw
k=l

From equations (6-12) and (6-14),

B(w) = A(w) + 9(w) and therefore,

1 1B() p() 6-15)
s d

Since fij -- [i] -1 and Bij depends on the time difference

i-j, representing yij by y(n) = y(i-j)= ¥ij'

y(n) * B(n) 3 (n) and therefore,

F(w) B(w) = 1 (6-16)

From equations (6-15) and (6-16),

P (w)a2
r(w) = P ") d (6-17)

. P5 (W) +ad|° d

and P (,.,) is given by equation (6-14b).

Since [.-i represents the covariance matrix of

the background noise, for N approaching -, e(i)-l/Pd
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where Pa(d) is the power spectrum of the background noise.

Therefore, a more general result of equation (6-17) that

also applies to the colored background noise is given by

P5 (w) +Pd() (6-18)

and P (w) is given by equation (6-14b). From equation

(6-18),

= -1 P s ( ) "d (W)

y(n) = y(i-j) - yij[s +d (6-19)
iJ P5s (W)+P d~

From equation (5-20),

s(i) .s(j) - E(s(i).s(j)!a,yo] = E[s(i) a,vo]

E[s(j)a,y] + Y¥ij"

Denoting s(i).w i) by s Wi) and letting (n)= LS WS

sw (i) w (i-n) for On<p,

s(n) I E~s(i) !a,yo] "Ets(i-n)[a,yo] "Ws(i)'Ws(i-n)

+ 7 Yi i-n'Ws(i).w s(i-n) for O<n<p. (6-20)

.
App roximnatinic i- by "r(n) for 0<no,

1l
C - ,
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o0 [ E[w~i .ao] E[Sw~i-n)ja,Y~o1

by s (n) in equation (6-8b) , and - w s(i)-w s (i-n)o0o

by w 2 (i) for 0 < n < p,S

*s(n) = F - [ 1Yw)'2 (P ( 2 +
s W P (w)+P (7) + wss d ( =)

P I for O<n<p (6-21)

Ps (W) Pd (W)

In an analogous manner as equation (6-10) was obtained from

equation (6-8), Cs(n) is estimated from equation (6-21) by

12. P s(k)

(n) -IDFT[IYw(k) 2I w(k)+Pd(k) 2 + (i)

CP (k) +P (k)
P S (k)+Pd(k) for 0<np (6-22)

s

and P s( ) is given by equation (6-14b). Equation (6-22)

can be used in minimizing p in equation (4-22).

Now we summarize the specific algorithm that has been

implemented and evaluated.

t

|" .

7
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Step 0: Obtain a0 by the correlation method of the

linear prediction analysis assuming s (n =

wwYw (n) .

Step 1: Begin from a,, the ith estimate of a.

Step 2: A. Estimate g by an energy measurement;

iw2 (n) 2
n 2 f 7 9 2dw

-Tl-r ak" e- Jk12
,, k=1

= y2w(n)- I w2s(n) _G2

n n

where a corresponds to a..

B. Estimate s(n) by

20 P (k)"P (k)IDFT[IY(k)j 2."JH(k) 12  + Z w2(i ). sd

i=_CO s Ps(k)+Pd7k)

where H(w) p s
Ps (w)+Pd (M

2
S P -jkw,2

- ak'e
k=1

and a corresponds to aif (n) is desired

and if it is the last iteration to be performed,

estimate sw (n) by IDFT[Y (k).H(k)].

Step 3: With the first p+l points of s(n), and a and

P0 given by the available a priori knowledge

of a, estimate ai by minimizing equation (4-22).

oL. l a, , ,' -L I
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The above steps complete one iteration and we'll

refer to the above system as System B. It is noted that

System B can be used to estimate s (n) as well as a.
W

VI.4 System C

This system is based on a speech enhancement method

discussed in Section 11.2.6. The specific algorithm

implemented and evaluated is given below.

2
Step 1: Estimate iSw(W) 2 by

IŜ w 12 IY()2 (. iw.) 1
Is U 2 = yw ) - k-E[2IDw

for IY () 2 > k.E[ID w(W)l 2

0 otherwise

for some constant k. S () , Y (j) and D (2w w w

represent the Fourier Transform of the windowed

segment of speech, noisy speech, and noise

respectively.

Step 2: Obtain ts(n) by IDFT[lSw(k) 2]. If sw (n) is

desired, then s (n) is estimated from IS ( )(t ww

I. in Step 1 and the phase of Y ()
w

Step 3: Estimate a by minimizing e in equation (4-22)

with the first p+ l points of (n) obtained in

Step 2.
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We'll refer to the above system as System C.

Compared with System A or System B, System C is computa-

tionally simpler. It is also noted that when k=O in

System C and no a priori information is assumed, it

corresponds to estimating a by the correlation method

of the linear prediction analysis with the assumption of

sw (n)=Yw (n).

I.

. 'I

... * ,- _ _ - * '" . . .. ... .. ..
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CHAPTER VII EXAMPLES AND ILLUSTRATIONS

VII.1 Introduction

The three systems developed in Chapter V1 have

been applied to both synthetic and real speech data at

various S/N ratios and in this chapter a few examples are

illustrated. In Section VII.2, examples in which the

systems are applied to synthetic data are illustrated.

In Section VII.3, examples in which the systems are

applied to real speech data are illustrated. In all

the examples considered in this chapter, noisy data are

generated by adding zero mean white Gaussian background

noise and the S/N in dB is defined as 10.log( s2 (n)/

2 n
d (n)) where the summation is over the length of then

analysis segment. In all the figures in which a time

waveform is displayed, the duration is 25.6 msec. In

all the figures in which the log magnitude spectrum is

displayed, the range is approximately 50 dB and the

angular frequency is between 0 and - that corresponds to

the analog frequency between 0 and 5 kHz at 10 kHz

sampling rate.

VII.2 Application to Synthetic Data

I. The synthetic data used in the examples are based on

a 10 kHz sampling rate and are generated by exciting a

tenth order all pole filter whose coefficients were derived

from segments of real speech data. The excitation was

-
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chosen in one set of examples to be white Gaussian

noise and in the other set of examples to be a periodic

impulse train. As we discussed in Chapter III, all the

theoretical results in Chapters IV, V and VI were derived

assuming a stochastic excitation. For speech without

background noise, systems derived from this point of view

have empirically been shown to perform well even when the

excitation is a periodic impulse train and it will be

seen in thischapter and Chapter VIII that this statement

generally applies to the three systems under consideration.

In the examples considered in this section, the analysis

is based on 256 synthetic data points, the order of the

all pole system is assumed to be 10, and the S/N ratios

considered are 20 dB, 10 dB and 0 dB.

In Sections VII.2.1, VII.2.2 and VII.2.3, the perfor-

mance of the three systems are discussed and illustrated

individually based on one specific synthetic data segment

and then later a few more examples are illustrated. The

synthetic data used in Sections VII.2.1, VII.2.2 and VII.2.3

are shown in Figures 7.1 and 7.2. In Figure 7.1(a)

is shown the synthetic data when the excitation is random

noise. In Figure 7.1(b) is shown the log magnitude spectrum

of the data in Figure 7.1(a) and a tenth order all pole

fit to the spectrum by the correlation method of the linear

prediction analysis. In Figure 7.1(c) is shown the synthetic

data generated by the same all pole coefficients as in

1 .
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Figure 7.1(a) but the excitation is now a train of pulses

whose fundamental frequency is 150 Hz typical of an

adult male speech. In Figure 7.1(d) is illustrated a

tenth order all pole fit to the spectrum by the correla-

tion method of the linear prediction analysis. Since the

data used are synthetic, the all pole coefficients from

which the synthetic data were generated are known. In

Figure 7.2(a) is shown the log magnitude spectrum of the

synthetic data in Figure 7.1(a) and the transfer function

that corresponds to the known all pole coefficients. In

Figure 7.2(b) is shown the two transfer functions that

correspond to the known all pole coefficients and the all

pole coefficients estimated from the synthetic data by

the correlation method of the linear prediction analysis.

Figures 7.2(c) and 7.2(d) are equivalent to Figures 7.2(a)

and 7.2(b) with the difference in that the excitation is

a train of pulses.

VII.2.1 Application of System A to Synthetic Data

In Figure 7.3 is shown the results of the analysis

based on System A as a function of the number of iterations

when the S/N ratio is 20 dB and the excitation is random

I. noise. More specifically, in Figure 7.3(a) is shown the

all pole fit to the noisy synthetic data by the correlation

method of the linear prediction analysis with the assumption

that s (n)=yw(n), i.e. zeroth iteration. Figures 7.3(b),
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I I I

(c) (d)

Figure 7.3 Comparison of System A

(a) Log magnitude spectrum of the synthetic data in

, Figure 7.1(a) and an all pole fit to the noisy data spectrum

, after the zeroth iteration of System A at S/N = 20 dB;
to (b) Same as (a) after the first iteration of System A;

(c) Same as (a) after the second iteration of System A;

(d) Same as (a) after the third iteration of System A
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(c) and (d) represent the transfer functions obtained by

applying System A to the noisy synthetic data after one,

two and three iterations, respectively. In each of the

four figures (Ca) ,(b) , c) and (d)), the true log magnitude

spectrum corresponding to the excitation of random noise

is also shown to facilitate the comparisons. Figure 7.4

is the same as Figure 7.3 with the difference in that the

excitation is a train of pulses. Figures 7.5 and 7.6

are the same as Figures 7.3 and 7.4 with the

difference in that the S/N ratio is 10 dB. Figures 7.7

and 7.8 are the same as Figures 7.3 and 7.4 with the

difference in that the S/N ratio is 0 dB. In all the

Figures 7.3 through 7.8, the analysis is based on the

assumption that no a priori information of the coefficient

vector is available. From the f..gures, it can be observed

that for the three S/N ratios considered a good fit to

the true log magnitude spectrum can be obtained after two

iterations of System A. It is also observed that the

performance of the system when applied to the synthetic

data generated by an excitation of a train of pulses is

similar to the case of the random noise excitation.

From the theoretical point of view, it is expectedIi that a converging solution after many iterations is morep. desirable. In general, however, it has been observed that

the converging solution of System A generates the transfer

F function for which the bandwidths of the poles are smaller

than those associated with real speech. Such a phenomenon
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I.
Figure 7.7 Same as Figure 7.3 with S/N = 0 dB

1
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can be observed by the general trend of the estimated

transfer functions shown in Figures 7.3 through 7.8

as the number of iterations increases. Thus, in the

actual implementation of System A, it seems desirable

to limit the number of iterations to two.

VII.2.2 Application of System B to Synthetic Data

In Figure 7.9 is shown the results of the analysis

based on System B as a function of the number of iterations

when the S/N ratio is 20 dB and the excitation is random

noise. More specifically, in Figure 7.9(a) is shown the

all pole fit to the noisy synthetic data by the correlation

method of the linear prediction analysis with the assumption

that s w (n)=y w (n), i.e. zeroth iteration. Figures 7.9(b),

(c) and (d) represent the estimated transfer functions

obtained by applying System B to the noisy synthetic

data after two, five and ten iterations, respectively. In

each of the four figures ((a), (b) , (c) and (d)) , the true

log magnitude spectrum corresponding to the excitation of

random noise is also shown to facilitate the comparisons.

Figure 7.10 is the same as Figure 7.9 with the difference

in that the excitation is a train of pulses. Figures

7.11 and 7.12 are the same as Figures 7.9 and 7.10 with

the difference in that the S/N ratio is 10 dB. Ficures

7.13 and 7.14 are the same as Figures 7.9 and 7.10 with

the difference in that the S/N ratio is 0 dB. Again the

I, _ __- -
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Figure 7.12 Same as Figure 7.10 with SIN 10 dB
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Figure 7.13 Same as Figure 7.9 with S/N = 0 dB
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analysis used in Figures 7.9 through 7.14 is based on

the assumption that no a priori knowledge of the coeffi-

cients is available.

From the figures, it can be observed that for the

S/N ratios considered, a good fit to the true spectrum

can be obtained after five or more iterations of System B.

It can also be observed that the performance of the

system is similar to both cases of excitation, i.e. random

noise and a train of pulses even though the system was

developed based on the assumption of the random noise

excitation.

It is not theoretically known if System B converges

to a solution. In all the synthetic and real speech data

that have been considered, however, it has been observed

that System B appears to converge and the estimate after

many iterations in general fits better to the true log

magnitude spectrum than the estimate obtained after a

few iterations. It has also been observed that the

results after ten iterations correspond reasonably well to

the final estimate.

VII.2.3 Application of System C to Synthetic Data

In Figure 7.15 is shown the results of the analysis

based on System C as a function of the scaling constant

"k", a parameter of System C, when the S/N ratio is 20

*dB and the excitation is random noise. More specifically,

- -1
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in Figure 7.15 (a) is shown the all pole fit to the log

magnitude spectrum of the noisy synthetic data by the

correlation method of the linear prediction analysis with

the assumption that s w(n)=y w(n). Figures 7.15(b), (c)

and (d) represent the estimated transfer functions obtained

by applying System C to the noisy synthetic data at

k=1,2, and 3 respectively. In each of the four figures

((a), (b), (c), (d)), the true log magnitude spectrum

corresponding to the excitation of random noise is shown

to facilitate the comparisons. Figure 7.16 is the same as

Figure 7.15 with the difference in that the excitation

is a train of pulses. Figures 7.17 and 7.18 are the same

as Figures 7.15 and 7.16 with the difference in that the

S/N ratio is 10 dB. Figures 7.19 and 7.20 are the same

as Figures 7.15 and 7.16 with the difference in that the

S/N ratio is 0 dB. In all the Figures 7.15 through 7.20,

the analysis is based on the assumption that no a priori

Jnforrnation of the coefficient vector is available.

From the figures, it can be observed that for the

S/N ratios considered a good fit to the true log magnitude

spectrum can be obtained when k=2 in System C. It is

also observed that the performance of the system is similar

in both cases of excitation, i.e. random noise and a

train of pulses.

When k equals zero, System C corresponds to the corre-

lation method of the linear prediction analysis that does
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Figure 7.20 Same as Figure 7.16 with S/N =0 dB
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not account for the presence of background noise. Thus,

the estimated transfer functions shown in (a) of Figures

7.13 through 7.20, correspond to the case when k equals

zero. From many examples of synthetic data, it has been

observed that the performance of System C in terms of the

log magnitude spectrum fit is poor when k is greater than

3. It has also been observed that the log magnitude

spectrum fit at k=2 is generally better than the fit when

k=l which corresponds to the correlation subtraction method.

In the specific example of the synthetic data that

has been considered in Sections VII.2.1, VII.2.2 and

VII.2.3, a reasonably good fit to the log magnitude

spectrum can be obtained by any of the three systems

with a proper choice of the system parameter (i.e. the

number of iterations for Systems A and B, and the value

of k for System C) . However, when the noisy data have

no spectral peaks or spectral peaks that are different

from the pole locations of the original data, then the

application of the three systems can result in the estimated

transfer functions whose pole frequencies are different

from those of the original data. This situation can occur

when the overall S/N ratio is sufficiently low in which

case all the pole frequencies can be affected, or when

I.4
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the local~ iS/N ratios near some pole locations are

sufficiently low in which case the local poles can be

affected. In Figures 7.21 through 7.24 are illustrated

two such examples. In Figures 7.21(a) and (b) are shown

an example of a segment of the synthetic data and its

log magnitude spectrum. In Figures 7.21(c) and (d) are

illustrated the noisy synthetic data at the S/N ratio of

-20 dB and its log magnitude spectrum. In Figure 7.22(a)

is illustrated the transfer function estimated from the

noisy synthetic data in Figure 7.21(c) by the correlation

method of the linear prediction analysis. In Figures

7.22(b), (c) and (d) are shown the transfer functions

estimated by System A after two iterations, System B after

ten iterations and System C with k=2. In each of the

four figures of Figure 7.22, the true log magnitude

spectrum of Figure 7.21(b) is also illustrated to facili-

tate the comparisons. From Figure 7.22, it is clear that

the transfer function generated by any of the three systems

does not fit the true spectrum well. Figures 7.23 and

7.24 are equivalent to Figures 7.21 and 7.22 with the

10The local S/N ratio between two angular frequencies 1
and .2 is defined by u2

j2, S (w) 2 dw

Local S/N ratio in dB 10"log Il
2
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(c) (d)

Figure 7.22 (a) Log magnitude spectrum of the synthetic

data in Figure 7.21(a) and an all Pole fit to the nosy
synthetic data with k=O of System C;

(b) Same as (a) with two iterations of System A;

(c) Same as (a) with ten iterations cf System B;

(d) Same as (a) with k=2 of System C
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Figure 7.23 (a) A synthetic data segment;

I. (b) Log magnitude spectrum of the synthetic data in (a);

(C) Noisy synthetic data of (a) at S/N = 10 dB;

(d) Log magnitude spectrum of the noisy synthetic data in Cc)

1
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Figure 7.24 (a) Log magnitude spectrum of the synthetic
data in Figure 7 .23(a) and an all pole fit to the noisy
synthetic data with k=O of System C;
(b) Same as (a) with two iterations of System A;
(c) Same as (a) with ten iterations of System B;
(d) Same as (a) with k=2 of System C
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difference in that a different synthetic data segment is

used at the S/N ratio of 10 dB. From Figure 7.24, it

is clear that the lower formants where the local S/N

ratio is relatively high are well recovered by the

three systems but the performance is poor for the higher

formants where the S/N ratio is relatively low.

At a high S/N ratio, the types of errors discussed

above do not occur frequently. As the S/N ratio decreases,

the errors occur more frequently and eventually a point

is reached at which the systems are no longer useful

for the analysis of noisy speech. In Chapter VIII, this

issue will be discussed in greater detail as the perfor-

mance of the three systems is evaluated by some objective

and subjective tests.

VII.3 Application to Real Speech Data

A number of discussions in Section VII.2 on the

performance of the three systems when applied to the syn-

thetic data in general also apply to the real speech

data. Therefore, only two examples of real speech data

at the S/N ratio of 10 dB will be illustrated primarily

to demonstrate that the performance of the systems when

I. applied to the real speech data is similar to the case

of the synthetic data. Again, the real speech data are

based on a 10 kHz sampling rate, the order of the all pole

model is assumed to be 10, the analysis is based on 256
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data points, and no a priori information of the all

pole coefficient vector is assumed to be available.

In Figures 7.25(a) and (b) are shown an example of

a segment of unvoiced speech and its log magnitude

spectrum. In Figures 7.25(c) and (d) are illustrated the

noisy synthetic data and its log magnitude spectrum. In

Figure 7.26(a) is illustrated the transfer function

estimated from the noisy speech data in Figure 7.25(c)

by the correlation method of the linear prediction analysis.

In Figures 7.25(b), (c) and (d) are shown the transfer

functions estimated by System A after two iterations,

System B after ten iterations and System C with k=2.

In each of the four figures of Figure 7.26, the true

log magnitude spectrum of Figure 7.25(b) is also illustrated

to facilitate the comparisons. Figures 7.27 and 7.28

are equivalent to Figures 7.25 and 7.26 with the differ-

erce in that a different rea! speech data which is voiced

is used. In the two examples considered, a good fit to

the spectrum can be obtain,.d by the three systems. Again

when a sufficiently lar4e amount of background noise

is added to speech, the errors discussed in Section VII.2

also occur. This can be observed to some extent for the

|. higher formants in Figure 7.23.

in this chanter, various examples were shown to

qualitatively illustrate the perfcrmance of the three

*systems when applied to both synthetic and real speech data.
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Figure 7.26 (a) Log magnitude spectrum of the real speech

data in Figure 7.25(a) and an all pole fit to the noisy speech

data with k-0 of System C;

(b) Same as (a) with two iterations of System A;
(c) Same as (a) with ten iterations of System B;

(d) Same as (a) with k=2 of System C
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Figure 7.28 (a) Log magnitude spectrum of the real speech

data in Figure 7.27(a) and an all pole fit to the noisy

speech data with k=O of System C;

(b) Same as (a) with two iterations of System A;

(c) Same as (a) with ten iterations of System B;

(d) Same as (a) with k=2 of System C
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In Chapter VIII, a more detailed and quantitative discus-

sion on the performance of the three systems will be

presented based on some objective and subjective tests.

h.
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CHAPTER VIII EVALUATION

VIII.1 Introduction

In this chapter, the performance of the three

systems developed in Chapter VI is discussed in greater

detail and more quantitatively based on some objective and

subjective tests. Even though the theoretical results can

be applied to colored noise as well as white noise, the

background noise considered here is white Gaussian

background noise. In Section VIII.2, the results of

an objective test are discussed. In the objective test,

the synthetic data are generated from the known all pole

coefficients and the estimated all pole coefficients by

the three systems are compared with the known all pole

coefficients under a reasonable criterion. in Section

VIII.3, the results of a subjective test to evaluate

the three systems as analysis/,synthesis systems (potential

bandwidth compression systems) of noisy speech are discusseQ.

if the estimated speech parameters are properly coded,

then they would correspond to true bandwidth compression

systems. In Section VIII.4, the three systems are evaluated

as speech enhancement systems. In Section VIII.5, some

additional studies are discussed, in which a complete
I.

analysis/synthesis system is used as input to a channel

vocoder. in Section VIII.6, the main results obtained 'n

Chapter VIII are surunarized.
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VIII.2 Objective Evaluation

In this section, we discuss the performance of the

three systems developed in Chapter VI based on an objective

criterion. In Section VIII.2.1, the systems and their

parameters that are objectively evaluated are listed.

In Section VIII.2.2, we describe the objective criterion

used for the system evaluation. In Section VIII.2.3,

we discuss how the all pole coefficients are obtained to

generate synthetic data. In Section VIII.2.4, we describe

how the synthetic data generated are used to obtain a

measure that leads to the system evaluation under the

objective criterion disucssed in Section VIII.2.2.

In Section VIII.2.5, we discuss the results of the objective

evaluation.

VIII.2.1 Systems Evaluated

All three systems discussed in Chapter VII are

evaluated for three cases per system. System A is evalua-

ted baseu on the results obtained after one, two and

three iterations. System B is evaluated based on the

results obtained after two, five and ten iterations.

System C is evaluated for the cases when k=l,2, and 3.

The above nine cases are compared with each other and

with the zase of Systera C when k=O which corresponds to

the conventional linear crediction analysis. In all

cases, it is assumed that the a oriori information of the
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all pole coefficient vector is not available.

The systems and their parameters for which the

objective test is performed are summarized in Table 8.1.

VIII.2.2 Objective Criterion

One measurement is made for the objective evaluation.

The measurement made is LLMSE which represents the

square error of the log magnitude spectrum. More speci-

fically, LMSE is given by

Tr -ji P -ji 2LMSE = M (og*l- a.e - ogll- .e ) .dw
4 Tr T lorl 3 o.l e~~- i=lil

- -a. W 2
- MP (Clog! ) "dw (8-1a)

i~l z

and a and a represent the known all pole coefficients from

which the synthetic data are generated and the estimated

all pole coefficients by one of the ten cases listed in

Table 8.1. In evaluating ILMSE in equation (8-1a), the
2-r

integral is replaced by a summation by sampling at ,=-l-k

where M=512. The M used here is the same M in equation

(8-1a). Thus LMSE is evaluated by
.2-,

p -3j k.i
1 a. *e2

1- a.e
LMSE-- (og'i=l
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Table 8. 1

Systems Evaluated under an O-bjective Criterion

Cases System Parameters A Priori Information

A-1 A one iteration none

A-Z A two iterations none

A-3 A three iterations none

B-2 B two iterations none

B-5 3 five iterations none

B-10 3 ten iterations none

C-1 C k= none

C-2 C k~z none

c-3 Ck=3 none

C-0 Ck=0 none
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The criterion used here for the performance evaluation is

based on the studies [7] that indicate that the square

error of the log magnitude spectrum reflects reasonably

well the degradation of the perceptually important aspects

of speech.

In addition to the LMSE measure, another measurement,

LCSE, which represents the LPC Coefficient Square Error

was also made. LCSE is defined as

LCE 7 (a12
i ( aiai (8-2)

and a and i represent the known all pole coefficients from

which the synthetic data are generated and the estimated

all pole coefficients by one of the ten cases listed in

Table 8.1. The results based on this measure will not be

used for the system performance evaluation in the context

of speech analysis. However, LCSE is an interesting

quantity in that the all pole coefficients are the parameters

that are directly estimated in the systems developed in

this thesis. The results based on LCSE are summarized in

Appendix 2.

VIII.2.3 Generation of All Pole Coefficients

The following two steps are used to obtain one

hundred sets of the all pole coefficients that are used

for generating synthetic data. The f.rst step involves

- .. . .. - ....
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generating a tenth order all pole function in the form

of

H~z) 5 1 (8-3)

T7 (1-b kz ) (l-b kz -
k=l

where b kis chosen randomly from within a circle with

the radias of 0.98 in the z plane with equal a priori

probability for each point in the circle. The second

step involves generating the synthetic data of 256 points

long by exciting H(z) in equation (8-3) with white

Gaussian noise and then estimating the all pole coefficients

based on the synthetic data by the correlation method of

the linear prediction analysis. In generating the all

pole coefficients, the second step was necessary since

some all pole coefficients generated by the first step

alone were quite large in their magnitudes (sometimes

greater than 20) and the error mceasure-ment LCSE in equation

(8-2) was dominated by the error due to a few such

coefficients. It was found that the second step essentially

forced the magnitudes of all the all pole coefficients

generated to be less than 4 without significantly changing

the locations and bandwidths of the poles generated by

the first step. One hundred sets of tenth order all pole

coefficients were obtained by the above two step procedure

and were used in generating the synthetic data for the
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objective evaluation.

VIII.2.4 Data Acquisition, Analysis and Results

Based on the one hundred all pole transfer functions

obtained in the manner discussed in Section VIII.2.3,

two hundred sequences were generated, one hundred

sequences by exciting with zero mean white Gaussian noise

and the remaining one hundred sequences by exciting

with a train of pulses with the pulse spacing that

corresponds to the fundamental frequency of 150 Hz.

Then for each of the two hundred sequences, noisy synthe-

tic data were generated by adding zero mean white Gaussian

background noise at the S/N ratios of -20, 0, 10, 20, and

40 dB. For each sequence of the noisy synthetic data

(one thousand sequences), the ten systems in Table VIII.1

were used to estimate the all pole coefficients. They

were then compared with the known all pole coefficients

from which the synthetic data were generated. Thus LMSE

in equation (8-1) and LCSE in equation (8-2) were obtained

for each of the one hundred sets of known all pole

coefficients as a function of the system type (ten

cases in Table 8.1), the type of excitation (random noise

i. or a pulse train) and the S/N ratio (-20, 0, 10, 20, and

40 dB). For notational convenience, we denote LMSE

(a , S. E., Rk) and LCSE(an, Si, , R) to represent
-n a n o

LMSE and LCSE that correspond to a ,S. , E. and R, , where
-n i
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n represents the nth set of the all pole coefficients

and thus l<n<100,

S. represents the ith system in Table 8.1 and

thus l<i<10,

E. represents the excitation type with E1 and E2

corresponding to random noise and a pulse train

respectively,

and Rk represents the kth S/N ratio with R1 ,R2,R 3 1 R4 and

R5 corresponding to -20, 0, 10, 20, and 40 dB

respectively.

Using this notation, we define LMSE and LCSE by

100
LMSE(Si /E_, ) = 00- " d LMSE(a ,Si, Ej (8-4)k 100 n=1l-

100 E 1 k

LCSE(SiE ) = 10 LCSE(a IS., (8-5)
S100n=l

From equations (8-4) and (8-5), LMSE and LCSE represent

the mean LMSE and LCSE averaged over the one hundred sets

of the all pole coefficients obtained in Section VIII.2.3

as a function of the system type, excitation type and S/N

ratio. LMSE obtained in this manner is tabulated in Table

8.2 and figures based on Table 8.2 are illustrated in

I. .Section VIII.2.5 where we discuss the performance of

different systems under the objective criterion. LCSE

is tabulated in Appendix 2. In Table 8.2 is also shown

the normalized LISE which is defined by1.
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LMSE(S i ,E., )
Normalized LMSE (SiE ,R) = (8-6)

LMSE(S 1 0 ,E i )

Since S10 corresponds to the conventional linear prediction

analysis that does not account for the presence of noise,

Normalized LMSE(Si,EjR) smaller than 1 indicates the

improvement of System Si over System S 0. Normalized

LCSE(SiE iRk) defined in an analogous manner as in

equation (8-6) is also tabluated in Appendix 2.

VIII.2.5 Discussions

In Figure 8.1 is shown LMSE(Si,Ej,R k ) for 1<i<3

that corresponds to System A, l<j<2 and l<k<5. In

Figure 8.1(a) is illustrated the case of j=l that corres-

ponds to random noise excitation and in Figure 8.1(b)

is shown the case of j=2 that corresponds to the case of

the pulse train excitation. In the figures, LMSE(S!0,EjR,)

is also shown by a solid line to facilitate the comparison

in terms of improvement over the conventional linear

prediction analysis. From Figure 8.1, the following

points are noted. First, System A is capable of performing

better than the conventional linear prediction analysis

for a wide range of S/N ratios. Second, System A showsI.
a better performance after two iterations than after one

iteration or three iterations at the S/N ratios above

-10 dB. This result is consistent with our observations in

'I
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Chapter VII. Third, System A degrades quickly below

0 dB of S/N ratio and eventually performs worse than the

conventional linear prediction analysis. Therefore, -10

dB seems to be the lowest S/N ratio at which System A

shows some improvement over the conventional linear predic-

tion analysis. Fourth, even though there are detailed

quantitative differences, qualitatively speaking, the

performance of System A is essentially the same for both

types of excitations which are consistent with our obser-

vations in Chapter VII.

Figure 8.2 is essentially the same as Figure 8.1

with the difference in that LMSE is plotted to determine

the performance of System B. The three systems plotted

are B-2, B-5 and B-10 listed in Table 8.1. From Figure

8.2, the following points are noted. First, System B

is capable of performing better than the conventional

linear prediction analysis for a wide range of S/N ratios.

Second, System B performs better after more iterations

are carried out. Therefore, it appears that the converging

solution is the optimum under the objective criterion.

This is consistent with our observations in Chapter VII.

It also appears that the results after ten iterations are

reasonably close to the converging solution. In Figure

8.2(a) is plotted a point (x) at the S/N ratio of 10 dB

after 20 iterations and it is slightly better than the

results after 10 iterations. Third, System B degrades

'I
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quickly below 0 dB of S/N ratio and eventu!ly performs

similarly to the conventional linear prediction analysis.

Therefore, -20 dB seems to be the lowest S/N ratio

at which System B shows some improvement over the conven-

tional linear prediction analyis. Fourth, the performance

of System B is essentially the same for both types of

excitations, which is consistent with our observations

in Chapter VII.

Figure 8.3 is essentially the same as Figure 8.1

with the difference in that LMSE is plotted to determine

the performance of System C. The three systems plotted

are C-1, C-2 and C-3 listed in Table 8.1. From Figure

8.3, the following points are noted. First, System C

is capable of performing better than the conventional

linear prediction analysis for a wide range of S/N ratios.

Second,System C with k=2 shows a better performance than

with k=l or 3 at the S/N ratios above -10 dB. This

result is consistent with our observations in Chapter VII.

Since k is a real number, there may be a more optimum k

which is not an integer. To understand how much more

improvement can be made by a different choice of k,LMSE

(Si,EIS/N=l0 dB) was computed for k between 1.0 and 3.0

sampled at twenty equally spaced points (i.e., k=l.l, 1.2,i.
....,2.8,2.9). it was found that k=2.0 is the optimum

among the 20 different values of k. Even though k has

not been varied 'or all its possible values at the SiN

I1
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ratios considered, it appears that other choices of

k do not significantly improve the performance of System

C. Third, System C degrades quickly below 0 dB of S/N

ratio and eventually performs worse than the conventional

linear prediction analysis. Therefore, -10 dB seems to

be the lowest S/N ratio at which System C with k=2

shows some improvement over the conventional linear predic-

tion analysis. Fourth, the performance of System C is

essentially the same for both types of excitation which

are consistent with our observations in Chapter VII.

In Figure 8.4 are shown the results of cases A-2,

B-10 and C-2 which seem to be approximately the best that

can be achieved by the three systems. The case of C-0

is also shown to facilitate the comparison with the

conventional linear prediction analysis. Figure 8.5 is

equivalent to Figure 8.4 except that Normalized LMSE

is plotted instead of U4SE. From Figures 8.4 and 8.5,

the following points are noted. First, below S/N ratio

of -20 dB, none of the three systems performs better

than the conventional linear prediction analysis. Between

-20 and -10 dB of S/N ratio, System B after ten iterations

performs best. Approximately from -10 dB to 20 dB of

S/N ratio, System A after two iterations shows the besti.
performance. Between 20 to 40 dB of S/N ratio, System

C with k=2 performs best. However, the improvement of

System C over System A or System B is not large. Above the
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SIN ratio of 40 dB, all the three systems essentially

reach the same performance. This result indicates that

no one system performs best at all S/N ratios. Since

the intelligibility of speech changes between essentially

zero to near perfect in the range of S/N ratios between

-10 and 20 dB, System A after two iterations would be

most useful for various practical applications under

the objective criterion..

In Figure 8.6, the dotted line shows the best that

can be achieved by any combination of the three systems

discussed in Figures 8.4 and 8.5. The solid line

corresponds to the conventional linear prediction analysis.

Therefore, the difference between the solid line and the

dotted line shows the improvement that can be achieved

by any combination of the three systems developed in Chapter

VI. How this improvement translates to the improvement

in the listener's subjective domain is the topic of the

next section.

VIII.3 Subjective Evaluation: Potential Bandwidth

Compression Systems

In this section, we discuss the performance of the

three systems as potential bandwidth compression systems

of noisy speech. when the speech model parameters are

properly coded they would correspond to true bandwidth

compression systems. In Section VIII.3.l, the test sentences
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that have been used in all the subjective tests are listed.

In Section VIII.3.2, the speech synthesis system used in syn-

thesizing speech based on the estimated all pole coefficients

by various potential bandwidth compression systems is dis-

cussed. In Section VIII.3.3, various systems are compared

with each other and based on a very informal listening, the

potential bandwidth compression system that performs best is

determined. In Section VIII.3.4, the system chosen in Sec-

tion VIII.3.3 is compared with the conventional linear pre-

diction analysis by fifteen listeners and the results obtained

are discussed.

VIII.3.1 Test Sentences

In all the subjective comparisons discussed in this

chapter, the following five English sentences are used:

sentence 1: They took the cross town bus.

sentence 2: That shirt seems much too long.

sentence 3: He has the bluest eyes.

sentence 4: The ball dropped from his hands.

sentence 5: Line up at the screen door.

Sentences 1, 3, and 5 are spoken by adult male speakers and

sentences 2 and 4 are spoken by adult female speakers.

I.

VIII.3.2 Speech Analysis/Synthesis System

In the analysis of speech, the all pole coefficients are

estimated by various different systems. The gain factor g is

t ... . ... .. ,
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estimated by an energy consideration such that the synthe-

sized speech has the energy that is approximately equal to

y 2(n)-Z E~d 2(n)]. in the case of the conventional linear
n n
prediction analysis, the gain g is obtained such that the

synthesized speech has the energy that is approximately equal

to I y 2 (n). The source information consists of the voicing!
n

unvoicing decision and the pitch period in the case of voicing.

The source information is obtained from the noise-free

speech and the same source information is used in all cases.

In the analysis, the number of all pole coefficients

p is assumed to be 10, the analysis window used is a rectan-

gular window of 256 points long and after each analysis, the

window is moved by 128 points and therefore the current ana-

lysis window overlaps with the previous analysis window by

128 data points. other choices of windows such as Hamming

window were also considered. The subjective improvements

by other choices of windows were minor in all cases.

In the speech synthesis, the system in Figure 3.1 is

used to generate speech.

VIII.3.3 Preliminary Comparison

The synthesized speech at three SIN ratios (i.e. 20'dE,

I. . 10 dB, 0 dB) by various systems listed in Table 8.1 has been

compared informally with each other by a few listeners and the

following subjective judgements were made.
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VIII.3.3.1 Comparison of Systems A-i, A-2 and A-3

As the number of iterations of System A increases from

one iteration to three iterations, it has been observed that

speech sounds clearer and noise is reduced more. However,

some "musical tone" like background noise becomes more

apparent and intenser as the number of iterations increases.

It appears that such speech degradation is primarily due to

the possible incorrect estimation of the formant frequencies,

particularly at higher formants. As a reasonable compromise,

System A-2 appears to be better than either System A-i or

System A-3.

VIII.3.3.2 Comparison of Systems B-2, B-5 and B-10

As the number of iterations of System B increases from

one iteration to ten iterations, it has been observed that

speech appears clearer and noise seems to be reduced more.

For System B, it appears that the performance of System B-10

is better than System B-2 or System B-5.

VIII.3.3.3 Comparison of Systems C-1, C-2 and C-3

For the S/N ratios of 10 dB and 20 dB, it appears that

the performance of System C-2 is better than System C-I. At

the S/N ratio of 0 dB, System C-2 appears to generate clearer

voiced sounds. However, many segments of unvoiced sounds

and the higher formants of voiced sounds essentially disappear

due to the subtraction of twice as much average short time

2,
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energy spectrum of noise from the short time energy spectrum

of noisy speech when the noise level is high relative to

the signal level.

A comparison between System C-2 and C-3 indicates that

the performance of System C-2 is better than System C-3

at all three S/N ratios considered.

VIII.3.3.4 Comparison of Systems A-2, B-10 and C-2

At the SIN ratios of 10 and 20 dB, System A-2 appears

to generate more intelligible and higher quality speech

than System B-10 or C-2. At the S/N ratio of 0 dB, System

A-2 and B-l0 perform better than System C-2. However, the

choice between System A-2 and System B-10 is difficult,

since System A-2 appears to have removed more random back-

ground noise but generated more "musical tone" like distor-

tion which is quite pronounced at this S/N ratio. Despite

this difficulty, we have chosen System A-2 to be compared

to the conventional linear prediction analysis for a speech

preference test discussed in the next section.

VIII.3.4 Evaluation of System A-2 Relative to
Conventional LPC Method

In general, a fair evaluation of either a bandwidth

compression system or speech enhancement system should be

* based on many factors such as intelligibility, speech

quality, listener fatigue, etc. The main purpose of the

subjective tests in this dissertat-ion is a preliminary

examination to determine whether or not the class
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of systems developed in this thesis deserve further

research efforts in terms of improving and evaluating

them. With such a purpose in mind, we have taken a very

limited point of view and performed a speech preference

test with a small amount of test material. The test

procedures and results are discussed in this section.

VIII.3.4.1 Test Material and Procedures

The test material consists of the five English

sentences described in Section VIII.3.1. The S/N ratios

considered in the test are 0 dB, 5 dB, 10 dB, 15 dB,

and 20 dB.

Two sentences were constructed for each of the five

English sentences and five S/N ratios based on the

analysis/synthesis system discussed in Section VIII.3.2.

One of the two sentences corresponded to System A-2

and the other sentence corresponded to the conventional

linear prediction analysis. Therefore, a total of

fifty sentences were constructed.

The test consisted of three sessions: one practice

session and two main sessions, Session I and Session II.

The practice session was intended primarily to acquaint

the listerners with the test procedures. Session I

was devoted to evaluating System A-2 as a potential

bandwidth compression system and Session II was devoted

to evaluating System A-2 as a speech enhancement system.

1 .i l~ .. " -"- , ... .. .. . , ... .. I I
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The test materials, procedures and results of Session

II will be presented in Section VIII.4 where we discuss

System A-2 as a speech enhancement system.

Session I consisted of five parts, each part

corresponding to one of the five S/N ratios. Each part

consisted of five trials. Each of the five trials

corresponded to one of the five English sentences. In

each trial, two sentences were presented, one of which

corresponded to System A-2 and the other corresponded

to the conventional linear prediction analysis. The

order of the presentation of the two sentences was

randomized in each trial.

The listeners were asked to judge in each trial

which of the two sentences was more preferable. It

was explained to the listeners that "more preferable"

could mean "more intelligible", "of higher quality",

"less noisy", any combination of them, etc. and it

was left entirely up to each individual listener to use

his own interpretation of "more preferable". In each

trial, the listeners were able to answer in five differ-

ent discrete categories: the first sentence is definitely

more preferable, the first sentence appears to be more

preferable, no preference between the two sentences, the

second sentence appears to be more preferable, and the

second sentence is definitely more preferable. It was

emphasized in the test that the judgement in each trial
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should be made as independently as possible of all the

previous trials.

VIII.3.4.2 Data Analysis and Results

Each response of a listener was converted to a

numerical value in the following manner:

2: System A-2 is definitely more preferable

1: System A-2 appears to be more preferable

0: no preference

-1: The conventional LPC analysis appears to be

more preferable

-2: The conventional LPC analysis is definitely

more preferable

The numerical value assigned to each response was considered

to represent the preference index of System A-2 P(Si,Lj,R k )

wherc Si represents the ith English sentence and thus

l<i<5, L. represents the jth listener and thus l<j<15

since fifteen listeners participated in the test, and Rk

represents the kth S/N ratio considered and thus l<k<7

(k=l corresponding to S/N=0 dB, k=2 corresponding to

S/N=5 dB, etc.). From P(Si,LjRk), P(Lj,Rk) was obtained

by

I.

P(L5il P(Si,L 9 ,R) (8-7)

From P(Lj,R k ) in ec.uation (8-7), P (R) and Ps(Rk) were
D M k SD k
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obtained by

PM(R) = 15 l P(Lj'Rk (8-8a)

j=l

1

PsD(R k) _15I (PM ()_P(L j,R)) 2 (8-8b)
jl

Therefore, a positive PM(R k) represents the preference

of System A-2 over the conventional linear prediction

analysis averaged over the five sentences used as test

material and fifteen listeners. The highest number

possible for PM(Rk) is 2. PSD(Rk) is the standard

deviation of P(Lj,Rk) and represents the variability

among the listeners in their responses.

P M(R k) and PSD(Rk) are tabluated in Table 8.3 and

plotted in Figure 8.7. The solid line in Figure 8.7

corresponds to P M(R k) and the difference between the solid

line and either the upper or lower dotted line corresponds

to PSD (Rk). Even though the test was not performed at the

S/N ratio of -- or +-, we can deduce the results from

the theoretical considerations. At the S/N ratio of =,

System A-2 is equivalent to the conventional linear

prediction analysis and hence we would expect that P (S/N
M

ratio = -)=0. At the S/N ratio of - , the preference if

any does not mean much.

I~.

. .I i.- - .l-- -. . .
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Table 8. 3

Results of the Speech Preference Test in which System A-2
is Used as a Potential Bandwidth Compression Systemu

SIN Ratio P M(RkJ) P SD(R k)

0 dB 1.413 0.529

5 dB 1.387 0.481

10 dB 1.040 0.662

15 dB 1.600 0.343

20 dB 1.293 0.473
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0 5 10 15 20 dB

S/N

Figure 8.7 (a) Results of the speech preference test in which
System A-2 is used as a potential bandwidth compressionsystem. The solid line represents PM(R.k), and the distance
between the solid line and the dotted line represents pSD (R )

1t
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VIII. 3.4. 3 Discussions

From the results in Figure 8.7 it is clear that

System A-2 is preferred over the conventional linear

prediction analysis at all the five S/N ratios that

have been considered. We conclude that these results

are sufficiently encouraging to devote further research

efforts in improving and evaluating a class of systems

developed in this dissertation.

VIII.4 Subjective Evaluation: Speech Enhancement Systems

As was discussed before, the systems that we developed

in Chapter V and Chapter VI can be used not only as

bandwidth compression systems but also as speech enhance-

ment systems. There are two ways that the systems

developed in this thesis can be used for speech enhance-

ment. One of them is to use the estimated speech s (n)

as enhanced speech. An alternative way is to use the

analysis/synthesis system as a speech enhancement system.

Since a complete analysis/synthesis system requires

the estimation of source information, the evaluation of

the systems as speech enhancement systems in this section

are restricted to the case in which the estimated speech

s w(n) is used as enhanced speech. Some discussions on

using a complete analysis/synthesis system for speech

enhancement are given in Section VIII.5.

In Section VIII.4.l, the speech enhancement systems
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that have been used for evaluation are specified. In

Section VIII.4.2, we remark briefly on the relative

performance of various systems listed in Table 8.1 as

speech enhancement systems. In Section VIII.4.3, the

performance of System A-2 is evaluated by a speech

preference test.

VIII.4.1 Speech Enhancement Systems

The speech enhancement systems are based on the

estimated sw (n). In System A, s w(n) is obtained in

Step 2. In System B, s w(n) is obtained in Step 2B. In

System C, s^(n) is obtained in Step 2. The analysis is

again based on a tenth order all pole system with a 10 kHz

sampling rate. In the analysis, a triangular window of

400 points was used with a frame rate of 200 points per

frame. The estimated s w(n) is added back together in

the same way it has been analyzed as is shown in Figure

8.8.

VIII.4.2 Preliminary Comparison

The differences in performance among various speech

enhancement systems are very similar to the differences

* in performance among various potential bandwidthI.
compression systems discussed in Section VIII.3.3. There-

fore, the discussions in Section VIII.3.3 also apply to

the three systems as speech enhancement systems.
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4200 PtI4

Input for Analysis

+. 200 Pta .

Output for Speech Construction

Figure 8.8 Data segmentation for the analysis and construction

of speech in a speech enhancement system based on System A-2

I.
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VIII.4.3 Evaluation of System A-2 as a Speech

Enhancement System

All aspects of the evaluation of System A-2 as a

speech enhancement system are identical to its evaluation

as a potential bandwidth compression system discussed

in Section VIII.3 with the following two differences. One

difference is that the comparison was made between noisy

speech and speech enhanced by System A-2 rather than

between synthesized speech by the conventional LPC

method and System A-2. Another difference is that System

A-2 as a bandwidth compression system was evaluated in

Session I as was discussed in Section VIII.3, while

System A-2 as a speech enhancement system was evaluated

in Session II of the speech preference test. The

responses obtained in Session II of the speech preference

test were analyzed in the same manner as those obtained

in Session I. To differentiate the results of Session II

from Session I, we use Q(Si,L.,R k), Q(L.,R), QM(R),

QSD(Rk) in place of P(Si,LiR), P(Lj,Rk), PM( R),

PSD(Rk) to denote the preference index obtained from the

responses in Session II. Therefore, Q(Si.Lj,Rk) denotes

the preference index as a function of the ith English

sentence, jth listener and kth S/N ratio. The equations

parallel to equations (8-7) and (8-8) are

5
Q(Lj'Rk) - Q(Si.L .,Rk) (8-9a)
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1M( k I5Z ( IRk (8-9b)
15

Q(R15 (QM(R)-Q(Lj ' R)) 2 ]2  (8-9c)

Like PM(Rk), a positive QM(Rk) represents the preference

of enhanced speech by System A-2 over the noisy speech

averaged over the five sentences used as test material

and fifteen listeners. The highest value possible for

QM(Rk) is 2. QSD(Rk) is the standard deviation of

Q(LjRk) and represents the variability among the listen-

ers in their responses.

QM Rk) and QSD(Rk) are tabulated in Table 8.4 and

plotted in Figure 8.9. The solid line in Figure 8.9

corresponds to QM(R k) and the difference between the solid

line and either the upper or lower dotted line corresponds

to QSD(R0. For the same reasons discussed in Section

VIII.3, Q M(S/N=-) would be zero and QM(S/N=--) does not

mean much.

Unlike the results of System A-2 as a potential

bandwidth compression system, enhanced speech processed

by System A-2 is preferred only at relatively high S/N

ratios. At lower S/N ratios, the "musical tone" like

background noise which arises primarily from the discon-

tinuities of the upper formant frequencies in a frame by

frame analysis scheme is sufficiently noticeable that the

1

--. .
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Table 8.4

Results of the Speech Preference Test in Which
System A-2 is Used as a Speech Enhancement System

S/N Ratio QM(Rk) QSD (R k)

0 dB -0.240 1.079

5 dB 0.240 1.023

10 dB 0.293 0.867

15 dB 0.467 1.042

20 dB 0.747 0.728

I.

1.
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0 5 10 is 20 dB

S/N

Figure 8.9 Results of the speech preference test in which
System A-2 is used as a speech enhancement system. The solid
line represents QM(Rk), and the distance between the solid
line and the dotted line represents QSD(Rk).

1t
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noise reduction by System A-2 does not sufficiently

offset the speech degradation for some listeners. The

responses of the listeners also indicate that some

listeners have strong preference for processed speech

while some other listeners have strong preference for

unprocessed noisy speech. This is reflected by the

large standard deviation shown in Figure 8.9.

In the context of this thesis, there are several

methods that may be used to eliminate or mask the

"musical tone" like background noise and they will be

discussed in Chapter IX where various improvements are

suggested for the class of systems developed in this thesis.

VIII.5 Additional Studies

VIII.5.1 Speech Enhancement by a Complete Analysis/

Synthesis System

In the context of the work in this thesis, speech

enhancement may be achieved by a complete analysis/synthe-

sis system. To consider the feasibility of such a scheme,

the speech material synthesized based on System A-2 in

Section VIII.3 were compared with the enhanced speech

obtained in Section VIII.4. Above the S/N ratio of about

10 dB, the enhanced speech in Section VIII.4 appeared to

sound better, while below the S/N ratio of about 10 dB

the opposite appeared to be true. It is difficult to
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interpret this result for several reasons. The source

information used in the synthesis of speech in Section

VIII.3 was obtained from noise-free speech. Such an

accurate source information is not available in practice.

On the other hand, the source model (random noise or a

train of pulses) used is a very simplified one and a

more sophisticated excitation source such as voice

excitation may improve the quality/intelligibility of

the synthesized speech. Without further study in this

area, the informal listening results imply that with

the simple source model and System A-2, the approach

to use the estimated sw (n) as enhanced speech is better

than the approach to use an LPC analysis/synthesis

scheme above the S/N ratio of 10 dB.

VIII.5.2 System A-2 as a Pre-processor for Other

Bandwidth Compression Systems

As has been discussed in Chapter III, the fact that

aO is estimated in addition to a is important in the

context of bandwidth compression of noisy speech as

well as speech enhancement. This is because if we

estimate only a, then we are limited to a class of vocoding

I|. systems known as "LPC" vocoders.

As an example of using the class of systems developed

* in this dissertation as pre-processors for other vocoding

systems, enhanced speech by System A-2 was processed by a
1]
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real time channel vocoder at Lincoln Laboratories and was

compared to speech processed by the same vocoder with

the unprocessed noisy speech as input. Based on informal

listening, it appears that the improvement made by

System A-2 is comparable to the improvement discussed

in Section VIII.3 where System A-2 as a potential band-

width compression system was compared to the conventional

linear prediction analysis.

VIII.6 Summary

In this chapter, the three systems developed in

Chapter VI have been evaluated under both an objective

and subjective criteria. Under the objective criterion

with the selection of the test material discussed in

Section VIII.2, we conclude that all the three systems

developed in Chapter VI with a proper choice of

the parameters perform better than the conventional linear

prediction analysis above -10 dB of the SIN ratio. Below

-20 dB of the SIN ratio, none of the three systems performs

any better than the conventional linear prediction

analysis. Among the class of sys tems implemented in

this dissertation, System A after two iterations performs

best under the objective criterion at various S/N ratios

of practical interest.

As a preliminary examination to determine whether or

not the class of systems developed in this thesis have
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potential to be used as bandwidth compression and speech

enhancement systems of noisy speech, System A has been

evaluated by a speech preference test. The results of

the test indicate that System A is clearly preferred

over the conventional linear prediction analysis as

a potential bandwidth compression system. In the context

of using System A as a speech enhancement system, the

results are not as positive. However, there are a number

of improvements that can be made as we will discuss in

Chapter IX. Based on the evaluation performed in this

chapter, we conclude that the results obtained are

sufficiently encouraging to invest further research

efforts in improving and evaluating the class of systems

developed in this dissertation.

.

1-
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CHAPTER IX FUTURE RESEARCH

IX.1 Introduction

In this chapter, we discuss a number of areas for

future research that are related to this dissertation.

The areas of future research can be broadly classified

into three different categories. The first category

is improving the systems implemented in this thesis and

is discussed in Section IX.2. The second category is

issues related to adapting the systems to real world

situations and is discussed in Section IX.3. The third

category is the theoretical issues and systems for

theoretical interest and is discussed in Section IX.4.

IX.2 Improvements

A serious attempt has not been made in this

dissertation to improve the performance of the systems

implemented in this thesis. A few simple modifications

may improve the performance of the systems developed.

In this 3ection, such modifications are discussed.

To indicate some potential areas in which some

improvement can be made, three spectrograms are shown

in Figures 9.1, 9.2 and 9.3. Figure 9.1 represents the

spectrogram of noise-free speech that corresponds toI.
"Line up at the screen door". Figure 9.2 represents

the spectrogram of synthesized speech by the conventional

LPC method at the S/N ratio of 0 dB. Figure 9.3 represents
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the spectrogram of the synthesized speech by System A-2

as a potential bandwidt-i compression system at the S/N

ratio of 0 dB. Comparing Figures 9.1 and 9.3, it is

clear that there are at least two main problems that

cause speech degradation in the process of reducing the

background noise. One of them is the non-smooth formant

transitions. This problem occurs when the formant

frequencies of speech change relatively fast and the

frame rate is low in a frame by frame analysis environment.

Such a problem may cause some speech degradation and can

be solved by a higher frame rate with some optimization

of the analysis window length, window type, or an inter-

polation scheme between frames in the synthesis. The

second problem which is more serious arises due to the

errors made by System A in estimating the formant frequen-

cies. Such errors cause discontinuities in the formant

frequencies, and occur more often in the higher formants

where the local S/N ratio is relatively low. Such formant

discontinuities are probably the primary cause of the

"musical tone" like background noise discussed in Chapter

VIII. In the remainder of this section, several ways

that may solve or reduce the effect of the formant

discontinuity problem are discussed.
I.

IX.2.1 Incorporation of A Priori Information

In the theoretical results developed in this disserta-

-- -.I ll I
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tion, it is possible to incorporate a priori information

of a. One potential source from which some a priori

information can be obtained is from the nearby analysis

frames. Since the human vocal tract can not move

arbitrarily fast, the results of one analysis frame are

in some sense correlated with the results of the

next analysis frame except at rapid onset or change.

One way to incorporate the results of the past analysis

frames in the analysis of the current frame is to

determine p(a), the a priori density of a, in terms of

the results of the previous analysis frame.

Some very preliminary experiment in which p(a) is

assumed to be N(a,P0) where a is the estimated a in

the previous analysis frame and P0 is a 
2.I for some a2

indicates that adding some a priori information from

the previous analysis frame to the current analysis

frame can reduce the "musical tone" like background

noise. Some optimization in the choice of a and P0 may

lead to some noticeable improvement.

IX.2.2 Smoothing Formant Frequencies

One effect of adding some a priori information in

a manner discussed in Section IX.2.1 is smoothing the

estimated all pole coefficients a of the individual

analysis frames. Even though such a method to some extent

leads to indirectly smoothing the formant frequencies and

r ,
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thus eliminating the formant discontinuities, a more

direct way would be to smooth the formant frequencies

themselves. Such a direct procedure has the additional

advantage that the formant frequencies can be smoothed

discriminately. More specifically, in the white back-

ground noise environment the upper formant frequencies

are degraded more often than the lower formant frequencies

and therefore it may be desirable to smooth only the

upper formant frequencies.

Such a smoothing procedure can eliminate the discon-

tinuities in the formant frequencies and thus may reduce

the "musical tone" like background noise. Furthermore,

when the S/N ratio is relatively high such that the

errors in the estimation of the formant frequencies do

not occur often, the smoothed formant frequencies can in

fact correspond to the true formant frequencies.

IX.2.3 Masking with Random Noise

As we discussed in Section 11.2.6, in a recent

study, Schwartz,et al. [19], considered a system which

is a modification of System C discussed in this thesis

for speech enhancement. In the process of eliminating

the effect of the background noise, System C creates some

|o .artificial speech degradation. Schwartz,et al. hypothe-

sized that such a degradation arises due to setting the

estimate of Is w) to zero when IY I2 is less than

I J.
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k.E[ID(w)2]. Therefore, in their speech enhancement

system, in place of zero IS^(w) 2 was set to

a.E[ID(w() I2 ] for a very small value of $ if IYw( )I2

is less than (k+)'E(IDw(W) 1. When such a modification

is made, Schwartz,et al. has found that some speech

degradation due to processing which is uncomfortable

to listen to disappeared.

One explanation that such a thresholding method can

reduce some perceptually undesirable speech degradation

is that it is a way of masking the speech degradation.

Based on this explanation, then, an alternative way to

mask the speech degradation which is easier to implement

than the threshold method is to simply add some random

noise to the processed speech. The concept of masking

the artifical speech degradation is not limited to System

C but can be applied to any system which generates some

perceptually undesirable speech degradation. The amount

of noise necessary to mask the speech degradation depends

on the level of the speech degradation that is to be

masked. In a very preliminary experiment, the processed

speech by System A has been added with some white random

noise. The reasonable level of noise added to mask

the "musical tone" like background noise is about 15 dB

below the original background noise level. If the process-

ing suggested in Sections IX.2.1 or IX.2.2 is carried out

successfully and thus reduce the level of the "musical tone"

1 21



-2 26-

like background noise, then it is expected that even a

lower level random noise than 15 dB below the original

noise level may be able to mask the perceptually unpleas-

ant speech degradation due to processing by System A-2.

Further, if the speech degradation occurs primarily in

the higher frequency regions in which the local SIN

ratio is relatively low, then adding high pass filtered

noise may be more desirable. A further study should be

carried out in determining the proper noise level and the

type of noise necessary to mask the speech degradation

that occurs by processing noisy speech with the class of

systems developed in this dissertaion.

IX.3 Adaptation to Practical Problems

There are many issues which require further study

in implementing the class of systems developed in this

thesis in practical environments. In this section, we

discuss some of these issues.

IX.3.l Estimation of P d(W)

In the systems discussed in this thesis, the power

spectrum of the backgroun noise P d M is assumed to be

known. In practice, Pd M) has to be estimated from the

noisy speech y(n). If the silence intervals are to be

used for the estimation of P M a silence detector from the

noisy speech has to be incorporated in the overall system.
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A related study to the estimation of Pd(W) is to

determine the sensitivity of the performance of the systems

developed in this thesis to a possible incorrect estima-

tion of P d(w). A system which performs well when Pd (W)

is correctly estimated may degrade quickly as the estimated

P d(w) differs from the true Pdw The sensitivity

issue is an important area to be investigated.

IX.3.2 Estimation of Source Information

To develop a complete analysis/synthesis system

based on the theoretical results developed in this

thesis, it is necessary to develop an algorithm that

estimates the source parameters. In the context of this

dissertation, we may simply apply existing pitch detectors

(40,41,42] to the estimated sW (n). Alternatively, there

may be a more optimum way of obtaining the source inf or-

mation that accounts for the presence of background

noise. The estimation of the source parameters from the

noisy speech is an important area for future research

in developing a complete analysis/synthesis system.

IX.3.3 Evaluation of Systems

* After some further study on the system improvement,

it is Important to evaluate the systems in terms of their

performance in improving speech intelligibility, quality,

etc. The choice of the system may depend on the specific

1M
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background noise environment, cost of implementation, etc.

IX.4 Further Theoretical Study and Related Work

IX.4.1 Implementation of Other Systems

In this dissertation, we considered estimating a

by maximizing p(alyO). Since maximizing p(aI 0 ) is a non-

linear problem, we considered "sub-optimal" procedures

in which p(a,§SOIzO) is maximized. An attempt to maximize

p(aSojyo) led to the LMAP and RLMAP algorithms which

require solving only sets of linear equations in an

iterative manner. Further approximations of these algo-

rithms led to System A and System B which were implemented.

An important area of future research from a theoretical

point of view is a theoretical understanding of the relations

and properties of the MAP, LMAP and RLMAP algorithms, and

their implementations. As we discussed in Section V.6,

a theoretical study to understand the relations and

properties of the three algorithms is currently in progress.

The implementation of the MAP algorithm is important since

the results obtained by maximizing p(alkO) are the optimum

that can be achieved if we follow the philosophy that is

taken in this research. The implementation of the LMAP

and RLMAP algorithms is important since it allows us toi.
understand the performance degradation due to the approxima-

tions made in developing System A and System B from the

LMAP and RL'AAP algorithms. It also allows us to understand

1.
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the effect of changing the problem from maximizing

p(aIx0 ) to p(aSoly_) . A comparison of the MAP, LMAP,

RLMAP methods, System A and System B in terms of their

performances can be a basis for determining the extent

of further research efforts in developing a different

approximation method to the true MAP estimation procedure.

IX.4.2 Different Initial Estimates of a

In the LMAP, RLMAP algorithms, System A and System B,

we begin from some initial estimate of a. In the systems

that were implemented, the initial estimate was obtained

by simply applying the correlation method of linear

prediction analysis to the noisy speech. Since the LmAP

and RLMAP algorithms are not guaranteed to give the

global maximum of p(alZO) or p(a,SOi O) , other initial

estimates of a may lead to different estimates of a.

Beginning from other initial estimates of a can be

useful in at least two different ways. First, they may

lead to better estimates of a. Second, the primary

disadvantage of System B relative to System A is its

slow convergence to a reasonable solution. If we begin

from some other initial estimates of a, System B may

converge to a solution more quickly. This is an area for

further study.
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IX.4.3 Incorporation of A Priori Information

There are many levels in incorporating a priori

information based on the knowledge that the noisy signal

we deal with is speech plus noise. In one extreme, we

could add some a priori information in a manner similar

to the discussions in Section IX.3. In the other extreme,

we may want to capitalize more fully on the physiological

constraints imposed by the human vocal mechanism and

even the linguistic constraints imposed by the rules

of the language. Since any accurate extra information

added in estimating the speech parameters can potentially

lead to a better estimate, such additional knowledge may

be important in dealing with the noisy speech. To

understand what knowledge of speech we can capitalize

on and how such knowledge can be used to estimate the

speech parameters better is an important area for future

research in many areas of speech processing.

IX.4.4 Excitation by a Train of Pulses

In the theoretical development in this dissertation,

various systems were developed based on the assumption

that the excitation is white Gaussian noise and we simply

applied the same systems to both unvoiced and voiced

sounds. 7f we estimate the system parameters of voiced

speech based on the assumption that the excitation is a

train of pulses, then a better estimate of the speech

1IL
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parameters may perhaps be obtained. Since a majority

of speech sounds are voiced and the voiced sounds are

very important in the perception of speech, an attempt

to estimate the speech parameters of voiced sounds more

accurately appears attractive. The notion to capitalize

on the periodicity of voiced sounds is also related to

the incorporation of more knowledge of speech in estimating

the speech parameters.

IX.4.5 Pole-Zero Modelling

In the theoretical development in this thesis, we

have assumed an all pole transfer function in the underlying

speech model. In a stationary background noise environ-

ment, the low energy speech segments such as unvoiced

speech degrade more quickly due to the relatively low

S/N ratio and thus are probably an important factor in

decreasing speech intelligiblity. Since unvoiced speech

can be better modelled by a pole-zero than an all pole

transfer function, the approach to use a pole-zero system

may lead to a better performance and it is an important

area for future research.

i.
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CHAPTER X CONCLUSION

In this thesis, the ptoblem of enhancement and band-

width compression of noisy speech was formulated as a

parameter estimation problem, in which we attempted

to estimate the parameters of an underlying speech model

from the noisy speech based on the MAP estimation proce-

dure. Such an approach led to two algorithms which

require solving sets of linear equations in an iterative

manner. Some approximations of the two algorithms led

to two systems which are computationally simpler than the

two algorithms by taking advantage of a high speed FFT

algorithm.

As a preliminary investigation into the performance

of the two systems developed in this thesis, the two

systems were implemented and applied to both real and

synthetic speech data. An objective and informal subjective

evaluation indicate that the systems implemented perform

well as enhancement and potential bandwidth compression

systems of noisy speech.

A number of studies were suggested for future research

in this thesis. They include various improvements and

furtler evaluation of the systems implemented in this thesis,

impleme ntation and evaluation of other systems developed

but have not been implemented in this thesis and develop-

ment of new 9ystems by incorpcrating more knowledge of

speech.
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APPENDIX

In Appendix I, we summarize briefly the notations

that have been used in the thesis. In Appendix II,

a table of LCSE and Normalized LCSE which were discussed

in Section VIII.2 is shown.

|.

1
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APPENDIX I SUMMARY OF NOTATIONS

T
a: (al,a 2. . . . . ,a p) , an all pole coefficient vector,

T represents transpose of a matrix

a: a priori mean of a

a.: ith estimate cf a

A(M): F[a(n)], discrete time Fourier transform of a(n)

A: 0 a a2 ... a 01 * * P 0
0 a1 a 2  a

p0
0 a I  • ", 0

0 a "

a a
2
a1

I

a 0
p.

a

A I :

a I .. ap1 "a''''' p-i, a[

ep

B(M): F(Cn)], discrete time Fourier Transform of 8(n)

d(n): disturbance or background noise; assumed to be

generated by a Gaussian random process

d w(n): d(n)w s(n), windowed background noise

Lw . ...
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d(nln 2): (d(nl) ..... ,d(n2 ))T

do: d(N-l,O), a vector of background noise

M-1 -.2w
DFTfx(n)]: X(k) = Z x(n).e M , M point Discrete

n=0

Fourier Transform of x(n)

E[x]: expected value of x

£ error function to be minimized
p

Ffx(n)]: X(w) = Z x(n) .e - 3 n, discrete time Fourier
n=-CO

Transform of x(n)

F I[X(w)]: x(n) - f X(w).e wn.dw, the inverse discrete

time Fourier Transform of X(w)

g: gain factor

H(z): z transform of the transfer function in the under-

lying speech model

M-1 .27r k.n
IDFT[X(k)]: x(n) = 1 Z X(k).e , the Inverse Discrete

k=0

Fourier Transform of X(k)

k(n): Kalman filter gain

-1.. m: (I-A) A

m: mean of s conditioned on a and v

N(A,B): Gaussian with mean of A and covariance of B

2 
P0 " a priori covariance 

of a
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Px(w): R x(n)'e 3 n , the power spectral density of

x(n)

p(A) : probability density function of A, or probability

density function evaluated at A=A0 ; see footnote 2

p(AO IBO ) : analogous to p(AO ) with the conditional density

function

R x(n): E[x(k).x(k-n)] for a stationary signal x(n), or

correlation of x(n)

Rs 2. (I-A)-1. ((I-A) 1) T

Rd E [dod T

s(n): signal or speech

s (n): s(n).w (n), windowed speechw s

s(nl,n 2) : (s(n1 ), .... ,s(n2 ))T

jo: s(N-1,0)

2-i: the ith estimate of

s(-l,-p)

-j wn, no
, s(n).e , discrete time Fourier Transform of

n=--

s(n)

IS( I): magnitude of S(w)

.S(W): phase of S(M), also denoted as <S(w)

u(n): a pulse train or random noise excitation

"u(n): an excitation vector, typically zero mean white

Gaussian noise

Var[x]: variance of x

L

' -. . .- J _ l



-241-

v(n): an observation vector, typically zero mean white

Gaussian noise

V: covariance of sO conditioned on a and Y

w(n): zero mean white Gaussian noise with unit variance

w (n): a smooth window function5

x(n): a state vector

x(-l): the initial state vector

AxML: Maximum Likelihood estimate of x

XMAP: Maximum A posteriori estimate of x

XMMSE: Minimum Mean Square Error estimate of x

y(n): s(n)+d(n), noisy signal or noisy speech

Yw(n): y(n).ws (n), windowed noisy speech

Y(nl,n 2 ): (y(n,) ...... ,y(n2 )) T

: y(N-l,O)

cc

Y(W): I y(n).e jwn, the discrete time Fourier Transform

of y(n)

IY(w) I: magnitude of Y(w)

JY(w): phase of Y(w), also denoted as <Y(w)

z(n): an observation vector

0x(n): Zx w(k)x w(k-n), the short time correlation of

x(n)

X(w): F [ x (n) ]

.

1''



-242-

xCZ)*x(Z-n), another definition of the
x ~Z=no0

short time correlation of x(n); note that

S(n) # *nx x
6(w): Ft8(n)]

F(w): F[Y(n)I
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